Abstract
Data analysis in modern biomedical research has to integrate data from different sources, like microarray, clinical and categorical data, so called multi-modal data. The reef SOM, a metaphoric display, is applied and further improved such that it allows the simultaneous display of biomedical multi-modal data for an exploratory analysis. Visualizations of microarray, clinical, and category data are combined in one informative and entertaining image. The U-matrix of the SOM trained on microarray data is visualized as an underwater sea bed using color and texture. The clinical data and category data are integrated in the form of fish shaped glyphs. The resulting images are intuitive, entertaining and can easily be interpreted by the biomedical collaborator, since specific knowledge about the SOM algorithm is not required. Visual inspection enables the detection of interesting structural patterns in the multi-modal data when browsing through and zooming into the image. Results of such an analysis are presented for the van’t Veer data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Quackenbush, J.: Computational analysis of microarray data. Nat. Rev. Genet. 2(6), 418–427 (2001)
Ochs: Microarray in cancer: Research and applications. Biotech. 34, 4–15 (2003)
van’t Veer, L.J., Dai, H., van de Vijer, M.J., He, Y.D., Hartt, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)
Brennan, D.J.: Application of DNA microarray technology in determining breast cancer prognosis and therapeutic response. Expert opinion on biological therapy 5(8), 1069–1083 (2005)
Dettling, M., Buehlmann, P.: Finding predictive gene groups from microarray data. Journal of Multivariate Analysis 90(1), 106–131 (2004)
Kohonen, T.: The self-organizing map. Proc. of the IEEE 78(9), 1464–1480 (1990)
Tamayo, P., Slonim, D., Medirov, J., et al.: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. PNAS 96, 2907–2912 (1999)
Wang, J., et al.: Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinf. 3(36) (2002)
Ultsch, A.: Self organizing neural networks for visualization and classification. In: Information and Classification, pp. 307–313. Springer, Heidelberg (1993)
Nattkemper, T.W.: The som reef - a new metaphoric visualization approach for self organizing maps. In: WSOM (2005)
Kohonen, T.: Self-Organization and Associative Memory. Springer, Heidelberg (1989)
Kohonen, T.: Self Organizing Maps. Springer, Berlin (2001)
Vesanto, J.: Som-based visualization methods. Intell. Data Anal. 3, 111–126 (1999)
Vesanto, J., Alhoneimi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11, 586–600 (2000)
Wu, S., Chow, T.W.S.: Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density. Pattern Recognition 37, 175–188 (2004)
Yang, C.C., Chen, H., Hong, K.K.: Visualization tools for self-organizing maps. In: Proc. of the 4th ACM conf. on Digital libraries, pp. 258–259 (1999)
Honkela, T., Kaski, S., Lagus, K., Kohonen, T.: Websom - self-organizing maps of document collections. In: Proc. of WSOM (1997)
Kaski, S., Nikkilä, J., Kohonen, T.: Methods for interpreting a self-organized map in data analysis. In: Proc. of ESANN (1998)
Rauber, A., Merkl, D.: Automatic labeling of self-organizing maps for information retrieval. JSRIS 10(10), 23–45 (2001)
du Toit, S., Steyn, A., et al.: Graphical exploratory data analysis. Springer, Heidelberg (1986)
Siegel, J., Farrell, E., Goldwyn, R., Friedman, H.: The surgical implication of physiologic patterns in myocardial infarction shock. Surgery 72, 126–141 (1972)
Hartigan, J.: Printergraphics for clustering. Journal of Statistical Computing and Simulation 4, 187–213 (1975)
Ribarsky, M., Ayers, E., Eble, J., Mukherjea, S.: Glyphmaker: Creating customized visualizations of complex data. IEEE Computer 27(7), 57–64 (1994)
Kraus, M., Ertl, T.: Interactive data exploration with customized glyphs. In: Skala, V. (ed.) WSCG 2001 Conference Proceedings (2001)
Shaw, C.D., Hall, J.A., Blahut, C., Ebert, D.S., Roberts, D.A.: Using shape to visualize multivariate data. In: Workshop on New Paradigms in Information Visualization and Manipulation, pp. 17–20 (1999)
Spoerri, A.: Infocrystal: a visual tool for information retrieval & management. In: Proceedings of the second international conference on Information and knowledge management, Washington, D.C., United States. ACM Press, New York (1993)
Chernoff, H.: The use of faces to represent points in n-dimensional pace graphically. Technical Report RN NR-042-993, Dept. of Stat., Stanford Univ. (1971)
Noh, J.y., Neumann, U.: A survey of facial modeling and animation techniques. Technical Report 99-705, USC Technical Report (1998)
Dorling, D.: Cartograms for visualizing human geography. In: Hearnshaw, H.M., Unwin, D.J. (eds.) Visualization in geographical Information Systems, pp. 85–102. John Wiley & Sons, Chichester (1994)
Alexa, M., Müller, W.: Visualization by metamorphosis. In: Wittenbrink, C.M., Varshney, A. (eds.) IEEE Visualization 1998 Late Breaking Hot Topics Proceedings, pp. 33–36 (1998)
Smith, M., Taffler, R., White, L.: Cartoon graphics in the communication of accounting information for management decision making. Journal of Applied Management Accounting Research 1(1), 31–50 (2002)
Pickett, R.M., Grinstein, G.G.: Iconographics displays for visualizing multidimensional data. In: Proc. IEEE Conf. on Systems, Man, and Cybernetics, pp. 514–519 (1988)
Kleiner, B., Hartigan, J.: Representing points in many dimension by trees and castles. J. Am. Stat. Ass. 76, 260–269 (1981)
Chua, M., Eick, S.: Information rich glyphs for software management. IEEE Computer Graphics and Applications 18, 24–29 (1998)
Venna, J., Kaski, S.: Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity. In: WSOM (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martin, C., grosse Deters, H., Nattkemper, T.W. (2006). Fusing Biomedical Multi-modal Data for Exploratory Data Analysis. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_83
Download citation
DOI: https://doi.org/10.1007/11840930_83
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38871-5
Online ISBN: 978-3-540-38873-9
eBook Packages: Computer ScienceComputer Science (R0)