[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Classifier Fusion: Combination Methods For Semantic Indexing in Video Content

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4132))

Included in the following conference series:

Abstract

Classifier combination has been investigated as a new research field to improve recognition reliability by taking into account the complementarity between classifiers, in particular for automatic semantic-based video content indexing and retrieval. Many combination schemes have been proposed in the literature according to the type of information provided by each classifier as well as their training and adaptation abilities. This paper presents an overview of current research in classifier combination and a comparative study of a number of combination methods. A novel training technique called Weighted Ten Folding based on Ten Folding principle is proposed for combining classifier. Experiments are conducted in the framework of the TRECVID 2005 features extraction task that consists in ordering shots with respect to their relevance to a given class. Finally, we show the efficiency of different combination methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kuncheva, L., Bezdek, J.C., Duin, R.: Decision templates for multiple classifier fusion: an experiemental comparaison. Pattern Recognition 34, 299–314 (2001)

    Article  MATH  Google Scholar 

  2. Rastrigin, L., Erenstein, R.: Method of collective recognition. Energoizdat (1982)

    Google Scholar 

  3. Jacobs, R., Jordan, M., Nowlan, S., Hinton, G.: Adaptive mixtures of local experts. Neural Computation 3, 1409–1431 (1991)

    Article  Google Scholar 

  4. Xu, L., Krzyzak, A., Suen, C.: Methods of combining multiple classifiers and their application to hardwriting recognition. IEEE Trans. Sys. Man. Cyber. 22, 418–435 (1992)

    Article  Google Scholar 

  5. Duin, R., Tax, D.: Experiements with classifier combining rules. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 16–29. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Jain, A., Duin, R., Mao, J.: Combination of weak classifiers. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(1) (2000)

    Google Scholar 

  7. Kuncheva, L.: Fuzzy versus nonfuzzy in combining classifiers designed by bossting. IEEE Transactions on fuzzy systems 11(6) (2003)

    Google Scholar 

  8. Chou, K., Tu, L., Shyu, I.: Performances analysis of a multiple classifiers system for recognition of totally unconstrained handwritten numerals. In: 4th International Workshop on Frontiers of Handwritten Recognition, pp. 480–487 (1994)

    Google Scholar 

  9. Achermann, B., Bunke, H.: Combination of classifiers on the decision level for face recognition. Technical repport of Bern University (1996)

    Google Scholar 

  10. Ho, T.: A theory of multiple classifier systems and its application to visual and word recognition. PhD thesis, Phd thesis of New-York University (1992)

    Google Scholar 

  11. Cybenko, G.: Approximations by superposition of a sigmoidal function. Mathematics of Control, Signal and Systems 2, 303–314 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Paalanen, P., Kamarainen, J., Ilonen, J., Kalviainen, H.: Feature representation and discrimination based on gaussian mixture model probability densities. Research Report, Lappeenranta University of Technology (1995)

    Google Scholar 

  13. Souvannavong, F., Merialdo, B., Huet, B.: Multi modal classifier fusion for video shot content retrieval. In: Proceedings of WIAMIS (2005)

    Google Scholar 

  14. Freud, Y., Schapire, R.: Experiments with a new boosting algorithms. In: Machine Learning: Proceedings of the 13th International Conference (1996)

    Google Scholar 

  15. Skurichina, M., Duin, R.: Bagging for linear classifiers. Pattern Recognition 31(7), 909–930 (1998)

    Article  Google Scholar 

  16. Ma, W., Zhang, H.: Benchmarking of image features for content-based image retrieval. In: Thirtysecond Asilomar Conference on Signals, System and Computers, pp. 253–257 (1998)

    Google Scholar 

  17. Carson, C., Thomas, M., Belongie, S.: Blobworld: A system for region-based image indexing and retrieval. In: Third international conference on visual information systems (1999)

    Google Scholar 

  18. Souvannavong, F., Merialdo, B., Huet, B.: Latent semantic analysis for an effective region based video shot retrieval system. In: Proceedings of ACM MIR (2004)

    Google Scholar 

  19. Wang, R., Huang, T.: Fast camera motion analysis from mpeg domain. In: Proceedings of IEEE ICIP, pp. 691–694 (1999)

    Google Scholar 

  20. TRECVID, Digital video retrieval at NIST, http://www-nlpir.nist.gov/projects/trecvid/

  21. Chang, S., Hsu, W., Kennedy, L., Xie, L., Yanagawa, A., Zavesky, E., Zhang, D.: Video seach and high level feature extraction. In: Proceedings of Trecvid (2005)

    Google Scholar 

  22. Zheng, Y.Y.C.: Run time information fusion in speech recognition. In: Proc. of ICSLP (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benmokhtar, R., Huet, B. (2006). Classifier Fusion: Combination Methods For Semantic Indexing in Video Content. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_7

Download citation

  • DOI: https://doi.org/10.1007/11840930_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics