[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Nonnegative Matrix Factorization for Motor Imagery EEG Classification

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4132))

Included in the following conference series:

Abstract

In this paper, we present a method of feature extraction for motor imagery single trial EEG classification, where we exploit nonnegative matrix factorization (NMF) to select discriminative features in the time-frequency representation of EEG. Experimental results with motor imagery EEG data in BCI competition 2003, show that the method indeed finds meaningful EEG features automatically, while some existing methods should undergo cross-validation to find them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113, 767–791 (2002)

    Article  Google Scholar 

  2. Ebrahimi, T., Vesin, J.F., Garcia, G.: Brain-computer interface in multimedia communication. IEEE Signal Processing Magazine 20, 14–24 (2003)

    Article  Google Scholar 

  3. Lal, T.N., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.: Support vector channel selection in BCI. Technical Report 120, Max Planck Institute for Biological Cybernetics (2003)

    Google Scholar 

  4. Cichocki, A., Zdunek, R., Amari, S.: Csiszár’s divergences for non-negative matrix factorization: Family of new algorithms. In: Proc. Int’l Conf. Independent Component Analysis and Blind Signal Separation, Charleston, South Carolina (2006)

    Google Scholar 

  5. Cichocki, A., Zdunek, R., Amari, S.: New algorithms for non-negative matrix factorization in applications to blind source separation. In: Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing, Toulouse, France (2006)

    Google Scholar 

  6. Cichocki, A., Choi, S.: Nonnegative matrix factorization with α-divergence. Pattern Recognition Letters (2006) (submitted)

    Google Scholar 

  7. Lemm, S., Schäfer, C., Curio, G.: BCI competition 2003-data set III: Probabilistic modeling of sensorimotor μ rhythms for classification of imaginary hand movements. IEEE Trans. Biomedical Engineering 51 (2004)

    Google Scholar 

  8. Paatero, P., Tapper, U.: Least squares formulation of robust non-negative factor analysis. Chemometrics Intelligent Laboratory Systems 37, 23–35 (1997)

    Article  Google Scholar 

  9. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  10. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, vol. 13. MIT Press, Cambridge (2001)

    Google Scholar 

  11. Blankertz, B., Müller, K.R., Curio, G., Vaughan, T.M., Schalk, G., Wolpaw, J.R., Schlögl, A., Neuper, C., Pfurtscheller, G., Hinterberger, T., Schroder, M., Birbaumer, N.: The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomedical Engineering 51 (2004)

    Google Scholar 

  12. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5, 1457–1469 (2004)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, H., Cichocki, A., Choi, S. (2006). Nonnegative Matrix Factorization for Motor Imagery EEG Classification. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_26

Download citation

  • DOI: https://doi.org/10.1007/11840930_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics