[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Bridging the Syntactic and the Semantic Web Search

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4132))

Included in the following conference series:

  • 1283 Accesses

Abstract

This paper proposes an information system, which aims to bridge the semantic gap in web search. The system uses multiple domain ontological structures expanding the user’s query with semantically related concepts, enhancing in parallel the quality of retrieval to a large extend. Query analyzers broaden the user’s information needs from classical term-based to conceptually representations, using knowledge from relevant ontologies and theirs’ properties. Besides the use of semantics, the system employs machine learning techniques from the field of swarm intelligence through the Ant Colony algorithm, where ants are considered as web agents capable of collecting and processing relevant information. Furthermore, the effectiveness of the approach is verified experimentally, by observing that the retrieval precision for the enhanced queries is in higher levels, in comparison with the results derived from the classical term-based retrieval procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anagnostopoulos, I., Anagnostopoulos, C., Kouzas, G., Vergados, D.: A Generalised Regression algorithm for web page categorisation. Neural Computing & Applications journal 13(3), 229–236 (2004)

    Article  Google Scholar 

  2. Anagnostopoulos, I., Anagnostopoulos, C., Loumos, V., Kayafas, E.: Classifying Web Pages employing a Probabilistic Neural Network Classifier. IEE Proceedings – Software 151(03), 139–150 (2004)

    Article  Google Scholar 

  3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: WWW7: Proceedings of the seventh international conference on World Wide Web 7. Elsevier Science Publishers B. V, Amsterdam (1998)

    Google Scholar 

  4. Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to Latent Semantic Analysis. Discourse Processes 25, 259–284 (1998)

    Article  Google Scholar 

  5. Brickley, D., Guha, R.V.: Rdf schema, http://www.w3.org/TR/rdf-schema/

  6. Anagnostopoulos, I., Psoroulas, I., Loumos, V., Kayafas, E.: Implementing a customized meta-search interface for user query personalization. In: 24th International Conference on In-formation Technology Interfaces, ITI 2002, June 24-27, pp. 79–84. Cavtat/ Dubrovnik (2002)

    Google Scholar 

  7. Dorigo, M., Maniezzo, V.: The ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics 26(1), 1–13 (1996)

    Google Scholar 

  8. Craswell, N., Hawking, D., Thistlewaite, P.: Merging Results from Isolated Search Engines. In: 10th Australasian Database Conference, Auckland, New Zealand, January 1999. Springer, Singapore (1999)

    Google Scholar 

  9. Yuwono, B., Lee, D.L.: Server ranking for distributed text retrieval systems on the internet. In: Topor, R., Tanaka, K. (eds.) DASFAA 1997, Melbourne, pp. 41–49. World Scientific, Singapore (1997)

    Google Scholar 

  10. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V.C., Sachs, J.: Swoogle: A search and metadata engine for the semantic web. In: Proceedings of the Thirteenth ACM Conference on Information and Knowledge Management, Washington, DC (November 2004)

    Google Scholar 

  11. Jena Semantic Web Framework, http://jena.sourceforge.net

  12. Bonabeau, E., Dorigo, M., Theraulaz, G.: Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  13. Dorigo, M., Caro, G.D.: The Ant Colony Optimization Meta-heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32. McGraw-Hill, London (1999)

    Google Scholar 

  14. Dorigo, M., Caro, G.D.: Ant Algorithms Optimization. Artificial Life 5(3), 137–172 (1999)

    Article  Google Scholar 

  15. Chen, S., Smith, S.: Commonality and genetic algorithms. Technical Report CMURITR- 96-27, The Robotic Institute, Carnegie Mellon University, Pittsburgh, PA, USA (1996)

    Google Scholar 

  16. Bianchi, L., Gambardella, L.M., Dorigo, M.: An ant colony optimization approach to the probabilistic traveling salesman problem. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, p. 883. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kouzas, G., Anagnostopoulos, I., Maglogiannis, I., Anagnostopoulos, C. (2006). Bridging the Syntactic and the Semantic Web Search. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_11

Download citation

  • DOI: https://doi.org/10.1007/11840930_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics