[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Neuro-Dominance Rule for Single Machine Tardiness Problem with Unequal Release Dates

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4132))

Included in the following conference series:

Abstract

We present a neuro-dominance rule for single machine total weighted tardiness problem with unequal release dates. To obtain the neuro-dominance rule (NDR), backpropagation artificial neural network (BPANN) has been trained using 10000 data and also tested using 10000 another data. The proposed neuro-dominance rule provides a sufficient condition for local optimality. It has been proved that if any sequence violates the neuro-dominance rule then violating jobs are switched according to the total weighted tardiness criterion. The proposed neuro-dominance rule is compared to a number of competing heuristics and meta heuristics for a set of randomly generated problems. Our computational results indicate that the neuro-dominance rule dominates the heuristics and meta heuristics in all runs. Therefore, the neuro-dominance rule can improve the upper and lower bounding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akturk, M.S., Ozdemir, D.: A new dominance rule to minimize total weighted tardiness with unequal release date. European Journal of Operational research 135, 394–412 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chu, C., Portman, M.C.: Some new efficient methods to solve the n| 1 | r i | Σw i T i scheduling problem. European Journal of Operation Research 58, 404–413 (1992)

    Article  MATH  Google Scholar 

  3. Rinnooy Kan, A.H.G.: Machine sceheduling problems: Classification complexity and omputations, Nijhoff, The Hague (1976)

    Google Scholar 

  4. Rachamadugu, R.M.V.: A note on weighted tardiness problem. Operations Research 23, 908–927 (1975)

    Article  MathSciNet  Google Scholar 

  5. Rinnooy Kan, A.H.G., Lageweg, B.J., Lenstra, J.K.: Minimizing total costs in one machine scheduling. Operations Research 23, 908–927 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Szwarc, W., Liu, J.J.: Weighted Tardines single machine scheduling with proportional weights. Management Science 39, 626–632 (1993)

    Article  MATH  Google Scholar 

  7. Akturk, M.S., Yidirim, M.B.: A new lower bounding scheme for the total weighted tardiness problem. Computers and Operational Research 25(4), 265–278 (1998)

    Article  MATH  Google Scholar 

  8. Cakar, T.: A New Neuro-dominance rule for single machine tardiness problem. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 1241–1250. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Chu, C.: A Branch-and-bound algorithm to minimize total tardiness with unequal release dates. Naval research logistics 39, 265–283 (1992)

    Article  MATH  Google Scholar 

  10. Dessouky, M.I., Deogun, J.S.: Sequencing jobs with unequal ready times to inimize mean flow time. SIAM Journal of Computing 10, 192–202 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bianco, L., Ricciardelli, S.: Sceheduling of a single machine to minimize total weighted completion time subject to release dates. Naval Research Logistics 29(1), 151–167 (1982)

    Article  MATH  Google Scholar 

  12. Hariri, A.M.A., Potts, C.N.: An algorithm for single machine sequencing with release dates to minimize total weighted completion time. Discrete Applied Mathematics 5, 99–109 (1983)

    Article  MATH  Google Scholar 

  13. Potts, C.N., Van Wassenhove, L.N.: A Branch and bound algorithm for total weighted tardiness problem. Operation Research 33, 363–377 (1985)

    Article  MATH  Google Scholar 

  14. Vepsalainen, A.P.J., Morton, T.E.: Priority rules for job shops with weighted tardiness cost. Management Science 33, 1035–1047 (1987)

    Article  Google Scholar 

  15. Potts, C.N., Van Wassenhove, L.N.: Dynamic programming and decomposition approaches for the single machine total tardiness problem. European Journal of Operation Research 32, 405–414 (1987)

    Article  MATH  Google Scholar 

  16. Abdul-Razaq, T.S., Potts, C.N., Van Wassenhove, L.N.: A survey of algorithms for the single machine total weighted tardiness scheduling problem. Discrete Applied Mathematics 26, 235–253 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sabuncuoglu, I., Gurgun, B.: A neural network model for scheduling problems. European Journal of Operational research 93(2), 288–299 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Çakar, T. (2006). A New Neuro-Dominance Rule for Single Machine Tardiness Problem with Unequal Release Dates. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_100

Download citation

  • DOI: https://doi.org/10.1007/11840930_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics