[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ECGSC: Elliptic Curve Based Generalized Signcryption

  • Conference paper
Ubiquitous Intelligence and Computing (UIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4159))

Included in the following conference series:

Abstract

Signcryption is a new cryptographic primitive that simultaneously fulfills both the functions of signature and encryption. The definition of Generalized Signcryption is proposed in the paper firstly. Generalized signcryption has a special feature that provides confidentiality or authenticity separately under the condition of specific inputs. Based on ECDSA, a signcryption scheme called ECGSC is designed. It will be equivalent to an AtE(OTP $, MAC) encryption scheme or ECDSA when one of party is absent. A third party can verify the signcryption text publicly in the method of ECDSA. Security properties are proven based on Random Oracle mode: confidentiality (CUF-CPA), unforgeability (UF-CMA) and non-repudiation. Compared with the others, ECGSC presents a 78% reduction in computational cost for typical security parameters for high level security applications.

This work is supported by National Natural Science Foundation of China (64073037).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Krawczyk, H.: The order of encryption and authentication for protecting communications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 310–331. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption) << Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

    Google Scholar 

  3. Bao, F., Deng, R.H.: A signcryption scheme with signature directly verifiable by public key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Yum, D.H., Lee, P.J.: New Signcryption Schemes based on KCDSA. In: Proceedings of the 4th International Conference on Information Security and Cryptology, Seoul, South Korea, pp. 305–317 (2002)

    Google Scholar 

  5. Shin, J.B., Lee, K., Shim, K.: New DSA-Verifiable Signcryption Schemes. In: Proceedings of the 5th International Conference on Information Security and Cryptology, Seoul, South Korea, pp. 35–47 (2003)

    Google Scholar 

  6. Malone-Lee, J., Mao, W.: Two birds one stone: Signcryption using RSA. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 210–224. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Zheng, Y., Imai, H.: How to construct efficient signcryption schemes on elliptic curves. Information Processing Letters 68(5), 227–233 (1998)

    Article  MathSciNet  Google Scholar 

  8. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Dodis, Y., Rreedman, M., Jarecki, S., Jarecki, S., Walfish, S.: Versatile padding schemes for joint signature and encryption. In: Pfitzmann, B. (ed.) Proceedings of 11th ACM Conference on Computer and Communication Security (CCS 2004), Washingtion DC, USA, pp. 196–205 (2004)

    Google Scholar 

  10. Dent, A.W.: Hybrid Signcryption Schemes With Insider Security. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 253–266. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Bellare, M., Rogaway, P.: Random oracle are practical: a paradigm for designing efficient protocols. In: Proceeding of the First ACM Conference on Computer and Communication Security (CCS 1993), Fairfax, Virginia, USA, pp. 62–73 (1993)

    Google Scholar 

  12. Brown, D.: Generic Groups, Collision Resistance, and ECDSA. Design, Codes Cryptography 35(1), 119–152 (2005)

    Article  MATH  Google Scholar 

  13. Stern, J., Pointcheval, D., Malone-Lee, J., Smart Nigel, P.: Flaws in Applying Proof Methodologies to Signature Schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 93–110. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Baek, J., Steinfeld, R., Zheng, Y.: Formal Proofs for the Security of Signcryption. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Koblitz, N., Menezes, A., Vanstone, S.: The state of elliptic curve cryptography. Designs, Codes and Cryptography 30(19), 173–193 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, Y., Yang, X., Wei, P., Wang, Y., Hu, Y. (2006). ECGSC: Elliptic Curve Based Generalized Signcryption. In: Ma, J., Jin, H., Yang, L.T., Tsai, J.JP. (eds) Ubiquitous Intelligence and Computing. UIC 2006. Lecture Notes in Computer Science, vol 4159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11833529_97

Download citation

  • DOI: https://doi.org/10.1007/11833529_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38091-7

  • Online ISBN: 978-3-540-38092-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics