Abstract
In the current paper we first show that the fixpoint theory of equality is decidable. The motivation behind considering this theory is that second-order quantifier elimination techniques based on a theorem given in [16], when successful, often result in such formulas. This opens many applications, including automated theorem proving, static verification of integrity constraints in databases as well as reasoning with weakest sufficient and strongest necessary conditions.
Supported in part by the grants 3 T11C 023 29 and 4 T11C 042 25 of the Polish Ministry of Science and Information Society Technologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1996)
Ackermann, W.: Untersuchungen über das eliminationsproblem der mathematischen logik. Mathematische Annalen 110, 390–413 (1935)
Barwise, J.: On Moschovakis closure ordinals. Journal of Symbolic Logic 42, 292–296 (1977)
Chandra, Harel., D.: Computable queries for relational databases. Journal of Computer and System Sciences 21, 156–178 (1980)
Chandra, Harel, D.: Structure and complexity of relational queries. Journal of Com-puter and System Sciences 25, 99–128 (1982)
Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited. Journal of Automated Reasoning 18(3), 297–336 (1997)
Doherty, P., Łukaszewicz, W., Szałas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. In: International Joint Conference on AI (IJCAI’2001), pp. 145–151 (2000)
Immerman, N.: Upper and lower bounds for first-order expressibility. Journal of Computer and System Sciences 25, 76–98 (1982)
Kachniarz, J., Szałas, A.: On a static approach to verification of integrity constraints in relational databases. In: Orłowska, E., Szałas, A. (eds.) Relational Methods for Computer Science Applications, pp. 97–109. Springer Physica-Verlag, Heidelberg (2001)
Kolaitis, P., Vardi, M.: On the expressive power of variable-confined logics. In: Proc. IEEE Conf. Logic in Computer Science, pp. 348–359 (1996)
Lifschitz, V.: Circumscription. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Artificial Intelligence and Logic Programming, vol. 3, pp. 297–352. Oxford University Press, Oxford (1991)
Lin, F.: On strongest necessary and weakest sufficient conditions. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Proc. 7th International Conf. on Principles of Knowl-edge Representation and Reasoning, KR2000, pp. 167–175. Morgan Kaufmann, San Francisco (2000)
Magnusson, M.: DLS* (2005), http://www.ida.liu.se/labs/kplab/projects/dlsstar/
McCarthy, J.: Circumscription: A form of non-monotonic reasoning. Artificial Intelligence Journal 13, 27–39 (1980)
Nonnengart, A., Ohlbach, H.J., Szałas, A.: Elimination of predicate quantifiers. In: Ohlbach, H.J., Reyle, U. (eds.) Logic, Language and Reasoning. Essays in Honor of Dov Gabbay, Part I, pp. 159–181. Kluwer, Dordrecht (1999)
Nonnengart, A., Szałas, A.: A fixpoint approach to second-order quantifier elimination with applications to correspondence theory. In: Orłowska, E. (ed.) Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa. Studies in Fuzziness and Soft Computing, vol. 24, pp. 307–328. Springer Physica-Verlag, Heidelberg (1998)
Poizat, B.: Deux ou trois choses que je sais de L n . Journal of Symbolic Logic 47, 641–658 (1982)
Szałas, A.: On the correspondence between modal and classical logic: An automated approach. Journal of Logic and Computation 3, 605–620 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szałas, A., Tyszkiewicz, J. (2006). On the Fixpoint Theory of Equality and Its Applications. In: Schmidt, R.A. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2006. Lecture Notes in Computer Science, vol 4136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11828563_26
Download citation
DOI: https://doi.org/10.1007/11828563_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37873-0
Online ISBN: 978-3-540-37874-7
eBook Packages: Computer ScienceComputer Science (R0)