Abstract
Entity-Relationship and other common database modeling tools have restricted capabilities for designing a relationship of higher arity. Although a complete and unambiguous specification can be achieved by traditional functional dependencies for relational schemata, use of the traditional formal notation in practice is rare. We propose an alternative way: designing or surveying the properties of a non-binary relationship among object classes or attributes is considered by spreadsheet reasoning methods for functional dependencies. Another representation by the semilattice of closed attribute sets can also be used in parallel due to convenient conversion facilities.
This work was supported by the Hungarian National Office for Research and Technology under grant RET14/2005 and the German Academic Exchange Service (DAAD) research scholarship A/05/10580 in cooperation with the MÖB (Hungarian Scholarship Committee).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading (1995)
Albrecht, M., Buchholz, E., Düsterhöft, A., Thalheim, B.: An informal and efficient approach for obtaining semantic constraints using sample data and natural language processing. In: Thalheim, B. (ed.) Semantics in Databases 1995. LNCS, vol. 1358, pp. 1–28. Springer, Heidelberg (1998)
Armstrong, W.W.: Dependency structures of data base relationships. In: Rosenfeld, J.L. (ed.) Information Processing 74, Proceedings of IFIP Congress 74, Stockholm, pp. 580–583. North-Holland, Amsterdam (August 5–10, 1974)
Biskup, J.: Boyce-codd normal forma and object normal forms. Information Processing Letters 32(1), 29–33 (1989)
Biskup, J.: Foundations of information systems. Vieweg, Wiesbaden (1995) (in German)
Biskup, J., Demetrovics, J., Libkin, L.O., Muchnik, M.: On relational database schemes having a unique minimal key. J. of Information Processing 27, 217–225 (1991)
Biskup, J., Polle, T.: Decomposition of database classes under path functional dependencies and onto contraints. In: Schewe, K.-D., Thalheim, B. (eds.) FoIKS 2000. LNCS, vol. 1762, pp. 31–49. Springer, Heidelberg (2000)
Burosch, G., Demetrovics, J., Katona, G.O.H., Kleitman, D.J., Sapozhenko, A.A.: On the number of databases and closure operations. TCS 78(2), 377–381 (1991)
Camps, R.: From ternary relationship to relational tables: A case against common beliefs. ACM SIGMOD Record 31(2), 46–49 (2002)
Caspard, N., Monjardet, B.: The lattices of closure systems, closure operators, and implicational systems on a finite set: a survey. Discrete Applied Mathematics 127, 241–269 (2003)
Chen & Associates, Baton Rouge, LA. ER-designer reference manual (1986–1989)
Chen, P.P.: The entity-relationship model: Toward a unified view of data. ACM TODS 1(1), 9–36 (1976)
Chen, P.P. (ed.): Proc. 1st Int. ER Conf., ER 1979: Entity-Relationship Approach to Systems Analysis and Design, Los Angeles, USA. North-Holland, Amsterdam (1979/1980)
Codd, E.F.: A relational model for large shared data banks. CACM 13(6), 197–204 (1970)
Demetrovics, J., Huy, N.X.: Translations of relation schemes and representations of closed sets. PU.M.A.Ser. A 1(3-4), 299–315 (1990)
Demetrovics, J., Libkin, L.O., Muchnik, I.B.: Functional dependencies and the semilattice of closed classes. In: Demetrovics, J., Thalheim, B. (eds.) MFDBS 1989. LNCS, vol. 364, pp. 136–147. Springer, Heidelberg (1989)
Demetrovics, J., Molnar, A., Thalheim, B.: Graphical and spreadsheet reasoning for sets of functional dependencies. Technical Report 0404, Kiel University, Computer Science Institute (2004), http://www.informatik.uni-kiel.de/reports/2004/0404.html
Demetrovics, J., Molnár, A., Thalheim, B.: Graphical reasoning for sets of functional dependencies. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 166–179. Springer, Heidelberg (2004)
Habib, N., Nourine, L.: The number of moore families on n=6. Discrete Mathematics 294(3), 291–296 (2005)
Higuchi, A.: Note: Lattices of closure operators. Discrete Mathematics 179, 267–272 (1998)
Thalheim, B.: Entity-relationship modeling – Foundations of database technology. Springer, Berlin (2000), See also: http://www.informatik.tu-cottbus.de/~thalheim/HERM.htm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Demetrovics, J., Molnár, A., Thalheim, B. (2006). Relationship Design Using Spreadsheet Reasoning for Sets of Functional Dependencies. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds) Advances in Databases and Information Systems. ADBIS 2006. Lecture Notes in Computer Science, vol 4152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11827252_11
Download citation
DOI: https://doi.org/10.1007/11827252_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37899-0
Online ISBN: 978-3-540-37900-3
eBook Packages: Computer ScienceComputer Science (R0)