Abstract
The use of an ontology in order to provide a mechanism to enable machine reasoning has continuously increased during the last few years. This paper proposed an automated method for document classification using an ontology, which expresses terminology information and vocabulary contained in Web documents by way of a hierarchical structure. Ontology-based document classification involves determining document features that represent the Web documents most accurately, and classifying them into the most appropriate categories after analyzing their contents by using at least two pre-defined categories per given document features. In this paper, Web documents are classified in real time not with experimental data or a learning process, but by similarity calculations between the terminology information extracted from Web documents and ontology categories. This results in a more accurate document classification since the meanings and relationships unique to each document are determined.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Song, M., Lim, S., Kang, D., Lee, S. (2006). Ontology-Based Automatic Classification of Web Documents. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_86
Download citation
DOI: https://doi.org/10.1007/978-3-540-37275-2_86
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37274-5
Online ISBN: 978-3-540-37275-2
eBook Packages: Computer ScienceComputer Science (R0)