[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A BP Neural Network Based Technique for HIF Detection and Location on Distribution Systems with Distributed Generation

  • Conference paper
  • First Online:
Computational Intelligence (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4114))

Included in the following conference series:

  • 630 Accesses

Abstract

High Impedance Faults (HIF) are faults of difficult detection and location while using traditional digital relaying. In this article it is presented a new proposal for detection and location of HIF’s in distribution systems with distributed generation (DG), based on artificial neural networks. The methodology inputs are the local measured voltage and current phase components, supplying as output the detection, classification and location of the fault, when it occurs. The basic characteristics, the algorithm and comparative tests with other detection and location methodologies are presented in this article. The proposed scheme was tested in a simulation platform of a distribution system with DG. The comparative results of the technique with usual fault detection and location schemes show the high efficiency and robustness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bretas, A.S., Pires, L., Moreto, M., Salim, R.H. (2006). A BP Neural Network Based Technique for HIF Detection and Location on Distribution Systems with Distributed Generation. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37275-2_74

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37274-5

  • Online ISBN: 978-3-540-37275-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics