Abstract
Having implemented discrete stationary wavelet transform (DSWT) to an image, combining generalized cross validation (GCV), noise is reduced directly in the high frequency sub-bands which are at the better resolution levels and local contrast is enhanced by combining de-noising method with non-linear gain operator (NGO) in the high frequency sub-bands which are at the worse resolution levels. In order to enhance the global contrast for the image, the low frequency sub-band image is also enhanced employing in-complete Beta transform (IBT) and simulated annealing algorithm (SA). IBT is used to obtain non-linear gray transform curve. Transform parameters are determined by SA so as to obtain optimal non-linear gray transform parameters. In order to avoid the expensive time for traditional contrast enhancement algorithms, which search optimal gray transform parameters in the whole gray transform parameters space, a new criterion is proposed with gray level histogram. Contrast type for original image is determined employing the new criterion. Gray transform parameters space is given respectively according to different contrast types, which shrinks gray transform parameters space greatly. Finally, the quality of enhanced image is evaluated by a total cost criterion. Experimental results show that the new algorithm can improve greatly the global and local contrast for an image while reducing efficiently gauss white noise (GWN) in the image. The new algorithm is more excellent in performance than histogram equalization, un-sharpened mask algorithm, WYQ algorithm and GWP algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, C., Wang, X., Zhang, H. (2006). Enhancing Contrast for Image Using Discrete Stationary Wavelet Transform and Non-linear Gain Operator. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_140
Download citation
DOI: https://doi.org/10.1007/978-3-540-37275-2_140
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37274-5
Online ISBN: 978-3-540-37275-2
eBook Packages: Computer ScienceComputer Science (R0)