[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mechanism Design and Analysis of Genetic Operations in Solving Traveling Salesman Problems

  • Conference paper
Intelligent Computing (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4113))

Included in the following conference series:

  • 1273 Accesses

Abstract

In this paper, some novel improved genetic operations are presented, several combinations of genetic operations are examined and the functions of these operations at different evolutionary stages are analyzed by numerical experiments. The essentiality of the ordering of the gene section, the significance of the evolutionary inversion operation and the importance of the selection model are discussed. Some results provide useful information for the implementation of the genetic operations for solving the traveling salesman problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choi, I.C., Kim, S.I., Kim, H.S.: A Genetic Algorithm with a Mixed Region Search for the Asymmetric Traveling Salesman Problem. Computers & Operations Research 30(5), 773–786 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Yoon, H.S., Moon, B.R.: An Empirical Study on the Synergy of Multiple Crossover Operators. IEEE Transactions on Evolutionary Computation 6(2), 212–223 (2002)

    Article  Google Scholar 

  3. Tang, L.X., Liu, J.Y., Rong, A.Y., Yang, Z.H.: Modelling and a Genetic Algorithm Solution for the Slab Stack Shuffling Problem When Implementing Steel Rolling Schedules. International Journal of Production Research 40(7), 1583–1595 (2002)

    Article  MATH  Google Scholar 

  4. Fogel, D.B.: Applying Evolutionary Programming to Selected Traveling Salesman Problems. Cybernetics and Systems 24(1), 27–36 (1993)

    Article  MathSciNet  Google Scholar 

  5. Chellapilla, K., Fogel, D.B.: Exploring Self-adaptive Methods to Improve the Efficiency of Generating Approximate Solutions to Traveling Salesman Problems using Evolutionary Programming. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, p. 361. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Nurnberg, H.T., Beyer, H.G.: Dynamics of Evolution Strategies in the Optimization of Traveling Salesman Problems. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, p. 349. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Goldberg, D.E., Lingle, R.: Alleles, Loci and Traveling Salesman Problem. In: Proc. of the Int. Conf. on Genetic Algorithms and Their Applications. Carnegie-Mellon University, pp. 154–159 (1985)

    Google Scholar 

  8. Davis, L.: Job Shop Scheduling with Genetic Algorithms. In: Proc. of the Int. Conf. on Genetic Algorithms and Their Applications. Carnegie-Mellon University, pp. 136–140 (1985)

    Google Scholar 

  9. Chen, G.L., Wang, X.F., Wang, D.S.: Genetic Algorithms and Applications. In: Press of Post and Telecommunications, Beijing, pp. 137–147 (1996)

    Google Scholar 

  10. Liang, Y.C., Ge, H.W., Zhou, C.G., Lee, H.P., Lin, W.Z., Lim, S.P., Lee, K.H.: Solving Traveling Salesman Problems by Genetic Algorithms. Progress in Natural Science 13(2), 135–141 (2003)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ge, H., Liang, Y., Marchese, M., Wang, L. (2006). Mechanism Design and Analysis of Genetic Operations in Solving Traveling Salesman Problems. In: Huang, DS., Li, K., Irwin, G.W. (eds) Intelligent Computing. ICIC 2006. Lecture Notes in Computer Science, vol 4113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816157_69

Download citation

  • DOI: https://doi.org/10.1007/11816157_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37271-4

  • Online ISBN: 978-3-540-37273-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics