[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New DNA-Based Approach to Solve the Maximum Weight Clique Problem

  • Conference paper
Computational Intelligence and Bioinformatics (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4115))

Included in the following conference series:

Abstract

Given an undirected graph with weights on the vertices, the maximum weight clique problem is to find a subset of mutually adjacent vertices, i.e. a clique, which have the largest total weight. We devised a new DNA encoding method to solve the maximum weight clique problem whose basic idea is that each vertex on weighted graph is encoded by two DNA strands of different length and each edge is encoded by one DNA strand with a length of 20. The longer DNA strand corresponding to vertexv i consists of three parts and its center part is with a length of w i ; the shorter DNA strand is the reverse complementation of the longer one’s center part. We also gave the correspond- ing molecule algorithm and its biological implementation. The proposed DNA computing method can be expanded to solve other NP-hard problems, and it provides further evidence for the ability of DNA computing to solve numerical optimization problems.

This work was supported by the Science and Technology Development Foundation from Shandong University at Weihai under Grant No.XZ2005005; the National Natural Science Foundation of China under Grant No.60573024; the National Grand Fundamental Research 973 Program of China under Grant No.2005CCA04500.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.M.: Molecular Computation of Solutions to Combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Lipton, R.J.: DNA solution of Hard Computational Problems. Science 268, 542–545 (1995)

    Article  Google Scholar 

  3. Ouyang, Q., Kaplan, P.D., Liu, S., et al.: DNA Solution of the Maximal Clique Problem. Science 278, 446–449 (1997)

    Article  Google Scholar 

  4. Head, T., Rozenberg, G., Bladergroen, R.S., et al.: Computing with DNA by Operating on Plasmids. Biosystems 57, 87–93 (2000)

    Article  Google Scholar 

  5. Sakamoto, K., Gouzu, H., Komiya, K., et al.: Molecular Computation by DNA Hairpin Formation. Science 288, 1223–1226 (2000)

    Article  Google Scholar 

  6. Narayanan, A., Zorbalas, S., et al.: DNA Algorithms for Computing Shortest Paths. In: Proceedings of the Genetic Programming, pp. 718–723. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  7. Shin, S.Y., Zhang, B.T., Jun, S.S., et al.: Solving Traveling Salesman Problems Using Molecular Programming. In: Proceedings of the Congress on Evolutionary Computation, pp. 994–1000. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  8. Yamamura, M., Hiroto, Y., Matoba, T.: Solutions of Shortest Path Problems by Concentration Control. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 231–240. Springer, Heidelberg (2002)

    Google Scholar 

  9. Lee, J.Y., Shin, S.Y., Park, T.H., et al.: Solving Traveling Salesman Problems with DNA Molecules Encoding Numerical Values. BioSystems 78, 39–47 (2004)

    Article  Google Scholar 

  10. Yin, Z.: DNA Computing in Graph and Combination Optimization, pp. 57–72. Science Press (2004) (in Chinese)

    Google Scholar 

  11. Ma, R., Zhang, Q., Gao, L., Xu, J.: Using DNA to Solve the Maximum Weight Clique of Graphs. ACTA Electronica Sinica 32, 13–16 (2004)

    Google Scholar 

  12. Xu, J., Wang, S., Pan, Q., Paun, G., Rozenberg, G., Salomaa, A.: write: DNA Computing: New Computing Paradigms, vol. 1, pp. 3–54. Tsinghua University publishing company (2004) (in Chinese)

    Google Scholar 

  13. Liu, W., Wang, S., Xu, J.: Research on the Encoding Method of DNA Computing. Computer Engineering and Applications 27, 118–121 (2003)

    MATH  Google Scholar 

  14. Han, A., Yang, Z., et al.: Complexity Analysis for HEWN Algorithm. Journal of Software 13, 2337–2342 (2002) (in Chinese)

    Google Scholar 

  15. Han, A.: Complexity Research for B Algorithm. In: Proceedings of the Tenth Joint Internation-al Computer Conference, pp. 188–192. International Academic Publishers (2004)

    Google Scholar 

  16. Wang, L., Lin, Y., Li, Z.: DNA Computation for a Category of Special Integer Planning Problem. Computer Research and Development 42, 1431–1437 (2005) (in Chinese)

    Article  Google Scholar 

  17. Chen, Z., Li, X., Wang, L., et al.: A Surface-Based DNA Algorithm for the Perfect Matching Problem. Computer Research and Development 42, 1241–1246 (2005) (in Chinese)

    Article  Google Scholar 

  18. Lancia, G.: Integer Programming Models for Computional Biology Problems. Journal of Computer Science and Technology 19, 60–77 (2004)

    Article  MathSciNet  Google Scholar 

  19. Ibrahim, Z., Tsuboi, Y., Muhammad, M.S., et al.: DNA Implementation of k-shortest Paths Computation. In: IEEE Congress on Evolutionary Computation. IEEE CEC 2005 Proceedings, vol. 1, pp. 707–713 (2005)

    Google Scholar 

  20. Liu, Q., Wang, L., Frutos, A.G., et al.: DNA Computing on Surfaces. Nature 403, 175–179 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, A., Zhu, D. (2006). A New DNA-Based Approach to Solve the Maximum Weight Clique Problem. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_35

Download citation

  • DOI: https://doi.org/10.1007/11816102_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37277-6

  • Online ISBN: 978-3-540-37282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics