Abstract
In this paper an exhaustive evaluation of the behavior of the most relevant features used in Semantic Role Disambiguation tasks when the senses of the verbs are considered and when they are not, is presented. This evaluation analyzes the influence of Verb Sense Disambiguation in the task. In order to do this, a whole system of Semantic Role Labeling is used and it is compared with similar methods. Our main results show how using the senses of the verbs improves the results for verb-specific roles, such as A2 or A3, and while not using them improves the results for adjuncts, such as modal or negative.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ninth Conference on Natural Language Learning (CoNLL 2005), Ann Arbor, Michigan, USA (June 2005)
Carreras, X., Màrquez, L.: Phrase recognition by filtering and ranking with perceptrons. In: Proceedings of Recent Advances in Natural Language Processing (RANLP), Borovets, Bulgaria (September 2003)
Carreras, X., Màrquez, L.: Introduction to the CoNLL 2005 Shared Task: Semantic Role Labeling. In: Proceedings of the Ninth Conference on Natural Language Learning (CoNLL 2005) [1]
Chieu, H.L., Ng, H.T.: Named Entity Recognition With a Maximum Entropy Approach. In: Proceedings of the Seventh Conference on Natural Language Learning (CoNLL), Edmonton, Alberta, Canada (May -June 2003)
Daelemans, W., Zavrel, J., van der Sloot, K., van den Bosch, A.: TiMBL: Tilburg Memory Based Learner, version 5.0, Reference Guide. ILK Research Group Technical Report Series 03-10, Tilburg, 56 pages (2003)
Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computational Linguistics 28(3), 245–288 (2002)
Gildea, D., Palmer, M.: The necessity of parsing for predicate argument recognition. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistic (ACL), Philadelphia (July 2002)
Giménez, J., Màrquez, L.: Fast and Accurate Part-of-Speech Tagging: The SVM Approach Revisited. In: Proceedings of Recent Advances in Natural Language Processing (RANLP), Borovets, Bulgaria (September 2003)
Hacioglu, K., Pradhan, S., Ward, W., Martin, J.H., Jurafsky, D.: Semantic Role Labeling by Tagging Syntactic Chunks. In: Proceedings of the Eighth Conference on Natural Language Learning (CoNLL 2004), Boston, MA, USA (May 2004)
Haghighi, A., Toutanova, K., Manning, C.: A Joint Model for Semantic Role Labeling. In: Proceedings of the Ninth Conference on Natural Language Learning (CoNLL 2005) [1]
Langley, P.: Selection of Relevant Features in Machine Learning. In: AAAI Press (ed.) Proceedings of the AAAI Fall Symposium on Relevance (AAAI), New Orleans, LA (1994)
Litkowski, K.: Senseval-3 task: Automatic Labeling of Semantic Roles. In: Proceedings of the Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcela, Spain, ACL-SIGLEX (July 2004)
Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a Large Annotated Corpus of English: the Penn Treebank. Computational Linguistics 19(2), 313–330 (1993)
Moreda, P., Palomar, M.: Selecting Features for Semantic Roles in QA Systems. In: Proceedings of Recent Advances in Natural Language Processing (RANLP), Borovets, Bulgaria (September 2005)
Palmer, M., Gildea, D., Kingsbury, P.: The Proposition Bank: An Annotated Corpus of Semantic Roles. Computational Linguistics 31(1), 71–106 (2005)
Pradhan, S., Hacioglu, K., Krugler, V., Ward, W., Martin, J., Jurafsky, D.: Support Vector Learning for Semantic Argument Classification. Machine Learning (2005)
Pradhan, S., Hacioglu, K., Ward, W., Martin, J.H., Jurafsky, D.: Semantic role chunking combining complementary syntactic views. In: Proceedings of the Ninth Conference on Natural Language Learning (CoNLL 2005) [1]
Punyakanok, V., Roth, D., Yih, W., Zimak, D.: Generalized inference with multiple semantic role labeling systems. In: Proceedings of the Ninth Conference on Natural Language Learning (CoNLL 2005) [1]
Punyakanok, V., Roth, D., Yih, W., Zimak, D., Tu, Y.: Semantic Role Labeling Via Generalized Inference Over Classifiers. In: Proceedings of the 20th International Conference on Computational Linguistics (COLING), Switzerland (August 2004)
Tjong Kim Sang, E.F., Canisius, S., van den Bosch, A., Bogers, T.: Applying spelling error correction techniques for improving semantic role labeling. In: Proceedings of the Ninth Conference on Natural Language Learning (CoNLL 2005) [1]
Suárez, A., Palomar, M.: A Maximum Entropy-based Word Sense Disambiguation System. In: Proceedings of the 19th International Conference on Computational Linguistics (COLING), Taipei, Taiwan, pp. 960–966 (August 2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moreda, P., Palomar, M. (2006). The Role of Verb Sense Disambiguation in Semantic Role Labeling. In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds) Advances in Natural Language Processing. FinTAL 2006. Lecture Notes in Computer Science(), vol 4139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816508_68
Download citation
DOI: https://doi.org/10.1007/11816508_68
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37334-6
Online ISBN: 978-3-540-37336-0
eBook Packages: Computer ScienceComputer Science (R0)