[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Complexity of Black-Box Ring Problems

  • Conference paper
Computing and Combinatorics (COCOON 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4112))

Included in the following conference series:

Abstract

We study the complexity of some computational problems on finite black-box rings whose elements are encoded as strings of a given length and the ring operations are performed by a black-box oracle. We give a polynomial-time quantum algorithm to compute a basis representation for a given black-box ring. Using this result we obtain polynomial-time quantum algorithms for several natural computational problems over black-box rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agrawal, M., Saxena, N.: Automorphisms of Finite Rings and Applications to Complexity of Problems. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 1–17. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Babai, L.: Local Expansion of Vertex-Transitive Graphs and Random Generation in Finite Groups. In: STOC 1991, pp. 164–174 (1991)

    Google Scholar 

  4. Babai, L.: Bounded Round Interactive Proofs in Finite Groups. SIAM J. Discrete Math. 5(1), 88–111 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Balcázar, J.L., Díaz, J., Gabarró, D.: Structural Complexity I. ETACS Monographs on Theoretical Computer Science. Springer, Heidelberg (1988) (I)

    Google Scholar 

  6. Balcázar, J.L., Díaz, J., Gabarró, D.: Structural Complexity II. ETACS Monographs on Theoretical Computer Science. Springer, Heidelberg (1990) (II)

    Google Scholar 

  7. Babai, L., Moran, S.: Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes. Journal Comput. Syst. Sciences 36(2), 254–276 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. McDonald, B.R.: Finite Rings with Identity. Marcel Dekker Inc., New York (1974)

    MATH  Google Scholar 

  9. Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: Proc. 25th IEEE Sympos. on the Foundation of Computer Science, pp. 229–240 (1984)

    Google Scholar 

  10. Vazirani, U., Bernstein, E.: Quantum Complexity Theory. Special issue on Quantum Computation of the Siam Journal of Computing (October 1997)

    Google Scholar 

  11. Cheung, K.K.H., Mosca, M.: Decomposing Finite Abelian Groups. Los Alamos Preprint Archive, quant-ph/0101004 (2001)

    Google Scholar 

  12. Eberly, W.: Computations for algebras and group representations, PhD thesis. University of Toronto (1989)

    Google Scholar 

  13. Friedl, K., Rónyai, L.: Polynomial time solutions for some problems in computational algebra. In: Proc. 17th Ann. Symp. Theory of Computing, pp. 153–162 (1985)

    Google Scholar 

  14. Kayal, N., Saxena, N.: On the Ring Isomorphism and Automorphism Problems. In: IEEE Conference on Computational Complexity, pp. 2–12 (2005)

    Google Scholar 

  15. Lenstra Jr., H.W.: Algorithms in algebraic number theory. Bulletin of the AMS 26(2), 211–244 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shor, P.: Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sanders, T., Shokrollahi, M.A.: Deciding properties of polynomials without factoring. In: Proc. 38th IEEE Foundations of Computer Science, pp. 46–55 (1997)

    Google Scholar 

  18. Gathen, J.v.z., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arvind, V., Das, B., Mukhopadhyay, P. (2006). The Complexity of Black-Box Ring Problems. In: Chen, D.Z., Lee, D.T. (eds) Computing and Combinatorics. COCOON 2006. Lecture Notes in Computer Science, vol 4112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11809678_15

Download citation

  • DOI: https://doi.org/10.1007/11809678_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36925-7

  • Online ISBN: 978-3-540-36926-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics