[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4065))

Included in the following conference series:

Abstract

The WWW is actually the most dynamic and attractive information exchange place. Finding useful information is hard due to huge data amount, varied topics and unstructured contents. In this paper we present a web browsing support system that proposes personalized contents. It is integrated in the content management system and it runs on the server hosting the site. It processes periodically site contents, extracting vectors of the most significant words. A topology tree is defined applying hierarchical clustering. During online browsing, viewed contents are processed and mapped in the vector space previously defined. The centroid of these vectors is compared with the topology tree nodes’ centroids to find the most similar; its contents are presented to the user as link suggestions or dynamically created pages. Personal profile is saved after every session and included in the analysis during same user’s subsequent visits, avoiding the cold start problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balabanovic, M., Shoham, Y.: Fab: Content-Based, Collaborative Recommendation. Communications of the ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  2. Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web. Wiley, Chichester (2003)

    Google Scholar 

  3. Basu, C., Hirsh, H., Cohen, W.: Recommendation as Classification: Using Social and Content-Based Information in Recommendation. In: Proc. of the 15th National Conference on Artificial Intelligence (AAAI 1998), pp. 714–720 (1998)

    Google Scholar 

  4. Berghel, H.: Cyberspace 2000: dealing with information overload. Communications of the ACM 40(2), 19–24 (1997)

    Article  Google Scholar 

  5. Bharat, K., Kamba, T., Albers, M.: Personalized Interactive News on the Web. Multimedia Systems 6(5), 349–358 (1998)

    Article  Google Scholar 

  6. Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proc. of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998), pp. 43–52 (1998)

    Google Scholar 

  7. Chakrabarti, S.: Mining the web. In: Discovering knowledge from hypertext data. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  8. Chen, Z., Wai-Chee Fu, A., Chi-Hung Tong, F.: Optimal algorithms for finding user access sessions from very large Web logs. World Wide Web: Internet and Information Systems 6, 259–279 (2003)

    Google Scholar 

  9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 39, 1–38 (1997)

    MathSciNet  Google Scholar 

  10. Dhillon, I., Kogan, J., Nicholas, C.: Feature Selection and Document Clustering. In: Survey of Text Mining, ch. 4, pp. 73–100. Springer, New York (2004)

    Google Scholar 

  11. Fraley, C., Raftery, A.: How many clusters? Which clustering method? Answers via model based cluster analysis. Computer Journal 41(8), 578–588 (1998)

    Article  MATH  Google Scholar 

  12. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.B.: Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  13. Kostkova, P., Diallo, G., Jawaheer, G.: User profiling for semantic browsing in medical digital libraries. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 827–831. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Joachims, T., Freitag, D., Mitchell, T.M.: WebWatcher: A Tour Guide for the World Wide Web. In: Proc. of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 770–777 (1997)

    Google Scholar 

  15. Kelly, D., Teevan, J.: Implicit Feedback for Inferring User Preference: A Bibliography. SIGIR Forum 37(2), 18–28 (2003)

    Article  Google Scholar 

  16. Kim, H.R., Chan, P.K.: Learning Implicit User Interest Hierarchy for Context in Personalization. In: Proc. of the 8th international conference on Intelligent user interfaces, Miami, Florida, USA, pp. 101–108 (2003)

    Google Scholar 

  17. Kirsh, D.: A few thoughts on cognitive overload. Intellectica, 19–51 (2000)

    Google Scholar 

  18. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40(3), 77–87 (1997)

    Article  Google Scholar 

  19. Lieberman, H.: Letizia: An Agent That Assists Web Browsing. In: Proc. of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 924–929 (1995)

    Google Scholar 

  20. Lieberman, H.: Autonomous Interface Agents. In: Proc. of the Conference on Human Factors in Computing Systems (CHI 1997), pp. 67–74 (1997)

    Google Scholar 

  21. Manber, U., Patel, A., Robison, J.: Experience with Personalization on Yahoo! Communications of the ACM 43(8), 35–39 (2000)

    Article  Google Scholar 

  22. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the Construction of Internet Portals with Machine Learning. Information Retrieval 3(2), 127–163 (2000)

    Article  Google Scholar 

  23. Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Capturing Interest through Inference and Visualization: Ontological User Profiling in Recommender Systems. In: Proc. 2nd Conference on Knowledge Capture, pp. 62–69 (2003)

    Google Scholar 

  24. Morita, M., Shinoda, Y.: Information Filtering Based on User Behavior Analysis and Best Match Text Retrieval. In: Proc. of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1994), pp. 272–281 (1994)

    Google Scholar 

  25. Resnick, P., Iacovou, N., Suchak, M., Bergstorm, J.R.P.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proc. of the ACM 1994 Conference on Computer Supported Cooperative Work (CSCW 1994), pp. 175–186 (1994)

    Google Scholar 

  26. Salton, G., Buckley, C.: Term Weighting Approaches in Automatic Text Retrieval, Technical Report, COR-87-881, Department of Computer Science, Cornell University (1987)

    Google Scholar 

  27. Sarwar, B.M., Karypis, G., Konstan, J.A.: Analysis of Recommendation Algorithms for E-commerce. In: Proc. of the 2nd ACM Conference on Electronic Commerce (EC 2000), pp. 158–167 (2000)

    Google Scholar 

  28. Schafer, J.B., Konstan, J.A., Riedl, J.: Meta-recommendation Systems: User-controlled Integration of Diverse Recommendations. In: Proc. of the 11th International Conference on Information and Knowledge Management (CIKM 2002), pp. 43–51 (2002)

    Google Scholar 

  29. Steinbach, M., Karypis, G., Kumar, V.: A comparison of Document Clustering Techniques. In: Proc. of KDD 2000 Workshop on Text Mining, pp. 109–110 (2000)

    Google Scholar 

  30. Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive Web Search Based on User Profile Construction without Any Effort from Users. In: Proc. of 13th International World Wide Web Conference, pp. 675–684 (2004)

    Google Scholar 

  31. Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.: PHOAKS: A System for Sharing Recommendations. Communications of the ACM 40(3), 59–62 (1997)

    Article  Google Scholar 

  32. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  33. Cadez, I.V., Heckerman, D., Meek, C., Smyth, P., White, S.: Model-based clustering and visualization of navigation patterns on a Web site. Data Mining and Knowledge Discovery 7(4), 399–424 (2003)

    Article  MathSciNet  Google Scholar 

  34. Kashyap, V., Ramakrishnan, C., Thomas, C., Bassu, D., Rindflesch, T.C., Sheth, A.: TaxaMiner: An Experimentation Framework for Automated Taxonomy Bootstrapping. International Journal of Web and Grid Services, Special Issue on Semantic Web and Mining Reasoning (September 2005) (to appear)

    Google Scholar 

  35. Cadez, I.V., Heckerman, D., Meek, C., Smyth, P., White, S.: Model-based clustering and visualization of navigation patterns on a Web site. Data Mining and Knowledge Discovery 7(4), 399–424 (2003)

    Article  MathSciNet  Google Scholar 

  36. Blanc, E., Giudici, P.: Sequence Rules for Web Clickstream Analysis. In: Perner, P. (ed.) Advances in Data Mining. LNCS (LNAI), vol. 2394, pp. 1–14. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  37. Perner, P., Fiss, G.: Intelligent E-marketing with Web Mining, Personalization, and User-Adpated Interfaces. In: Perner, P. (ed.) Advances in Data Mining. LNCS (LNAI), vol. 2394, p. 37. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  38. Archetti, F., Campanelli, P., Fersini, E., Messina, E.: A Hierarchical Document Clustering Environment based on the Induced Bisecting k-Means. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Messina, E., Toscani, D., Archetti, F. (2006). UP-DRES User Profiling for a Dynamic REcommendation System. In: Perner, P. (eds) Advances in Data Mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining. ICDM 2006. Lecture Notes in Computer Science(), vol 4065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790853_12

Download citation

  • DOI: https://doi.org/10.1007/11790853_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36036-0

  • Online ISBN: 978-3-540-36037-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics