[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Predicting 3D People from 2D Pictures

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4069))

Included in the following conference series:

  • 1027 Accesses

Abstract

We propose a hierarchical process for inferring the 3D pose of a person from monocular images. First we infer a learned view-based 2D body model from a single image using non-parametric belief propagation. This approach integrates information from bottom-up body-part proposal processes and deals with self-occlusion to compute distributions over limb poses. Then, we exploit a learned Mixture of Experts model to infer a distribution of 3D poses conditioned on 2D poses. This approach is more general than recent work on inferring 3D pose directly from silhouettes since the 2D body model provides a richer representation that includes the 2D joint angles and the poses of limbs that may be unobserved in the silhouette. We demonstrate the method in a laboratory setting where we evaluate the accuracy of the 3D poses against ground truth data. We also estimate 3D body pose in a monocular image sequence. The resulting 3D estimates are sufficiently accurate to serve as proposals for the Bayesian inference of 3D human motion over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Triggs, B.: Learning to track 3D human motion from silhouettes. In: ICML, pp. 9–16 (2004)

    Google Scholar 

  2. Agarwal, A., Triggs, B.: 3D human pose from silhouettes by relevance vector regression. In: CVPR, vol. 2, pp. 882–888 (2004)

    Google Scholar 

  3. Balan, A., Sigal, L., Black, M.: A quantitative evaluation of video-based 3D person tracking. In: VS-PETS, pp. 349–356 (2005)

    Google Scholar 

  4. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. IJCV 61(2), 185–205 (2004)

    Article  Google Scholar 

  5. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. IJCV 61(1), 55–79 (2005)

    Article  Google Scholar 

  6. Howe, N.R., Leventon, M.E., Freeman, W.T.: Bayesian reconstruction of (3D) human motion from single-camera video. In: NIPS, pp. 820–826 (1999)

    Google Scholar 

  7. Hua, G., Yang, M.-H., Wu, Y.: Learning to estimate human pose with data driven belief propagation. In: CVPR, vol. 2, pp. 747–754 (2005)

    Google Scholar 

  8. Isard, M.: Pampas: Real-valued graphical models for computer vision. In: CVPR, vol. 1, pp. 613–620 (2003)

    Google Scholar 

  9. Ju, S., Black, M., Yacoob, Y.: Cardboard people: A parametrized model of articulated motion. In: Int. Conf. on Automatic Face and Gesture Recognition, pp. 38–44 (1996)

    Google Scholar 

  10. Lan, X., Huttenlocher, D.: A unified spatio-temporal articulated model for tracking. In: CVPR, vol. 1, pp. 722–729 (2004)

    Google Scholar 

  11. Lee, M., Cohen, I.: Proposal maps driven MCMC for estimating human body pose in static images. In: CVPR, vol. 2, pp. 334–341 (2004)

    Google Scholar 

  12. Mori, G.: Guiding model search using segmentation. In: ICCV, pp. 1417–1423 (2005)

    Google Scholar 

  13. Mori, G., Ren, X., Efros, A., Malik, J.: Recovering human body configurations: Combining segmentation and recognition. In: CVPR, vol. 2, pp. 326–333 (2004)

    Google Scholar 

  14. Ramanan, D., Forsyth, D., Zisserman, A.: Strike a pose: Tracking people by finding stylized poses. In: CVPR, vol. 1, pp. 271–278 (2005)

    Google Scholar 

  15. Ramanan, D., Forsyth, D.: Finding and tracking people from the bottom up. In: CVPR, vol. 2, pp. 467–474 (2003)

    Google Scholar 

  16. Roberts, T.J., McKenna, S.J., Ricketts, I.W.: Human pose estimation using learnt probabilistic region similarities and partial configurations. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 291–303. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Rosales, R., Sclaroff, S.: Inferring body pose without tracking body parts. In: CVPR, vol. 2, pp. 721–727 (2000)

    Google Scholar 

  18. Sidenbladh, H., Black, M., Fleet, D.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: ICCV, vol. 2, pp. 750–759 (2003)

    Google Scholar 

  20. Sigal, L., Bhatia, S., Roth, S., Black, M., Isard, M.: Tracking loose-limbed people. In: CVPR, vol. 1, pp. 421–428 (2004)

    Google Scholar 

  21. Sigal, L., Black, M.: Measure Locally, Reason Globally: Occlusion-sensitive articulated pose estimation. In: CVPR (2006)

    Google Scholar 

  22. Sminchisescu, C., Kanaujia, A., Li, Z., Metaxas, D.: Discriminative density propagation for 3D human motion estimation. In: CVPR, vol. 1, pp. 390–397 (2005)

    Google Scholar 

  23. Sminchisescu, C., Triggs, B.: Estimating articulated human motion with covariance scaled sampling. IJRR 22(6), 371–391 (2003)

    Google Scholar 

  24. Sudderth, E., Mandel, M., Freeman, W., Willsky, A.: Distributed occlusion reasoning for tracking with nonparametric belief propagation. In: NIPS, pp. 1369–1376 (2004)

    Google Scholar 

  25. Sudderth, E., Ihler, A., Freeman, W., Willsky, A.: Nonparametric belief propagation. In: CVPR, vol. 1, pp. 605–612 (2003)

    Google Scholar 

  26. Taylor, C.J.: Reconstruction of articulated objects from point correspondences in a single image. CVIU 80(3), 349–363 (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sigal, L., Black, M.J. (2006). Predicting 3D People from 2D Pictures. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2006. Lecture Notes in Computer Science, vol 4069. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11789239_19

Download citation

  • DOI: https://doi.org/10.1007/11789239_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36031-5

  • Online ISBN: 978-3-540-36032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics