[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recovering Articulated Non-rigid Shapes, Motions and Kinematic Chains from Video

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4069))

Included in the following conference series:

Abstract

We propose an approach to analyze and recover articulated motion with non-rigid parts, e.g. the human body motion with non-rigid facial motion, under affine projection from feature trajectories. We model the motion using a set of intersecting subspaces. Based on this model, we can analyze and recover the articulated motion using subspace methods. Our framework consists of motion segmentation, kinematic chain building, and shape recovery. We test our approach through experiments and demonstrate its potential to recover articulated structure with non-rigid parts via a single-view camera without prior knowledge of its kinematic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhou, H., Huang, T.: Recovering Articulated Motion with a Hierarchical Factorization Method. In: Gesture Workshop 2003, pp. 140–151 (2003)

    Google Scholar 

  2. Taylor, C.J.: Reconstruction of Articulated Objects from Point Correspondences in a Single Image. In: CVPR, p. 677 (2000)

    Google Scholar 

  3. Bregler, C., Malik, J.: Tracking people with twists and exponential maps. In: CVPR, pp. 8–15 (1998)

    Google Scholar 

  4. Hogg, D.: Model-based vision: A program to see a walking person. Image and Vision Computing 1(1), 5–20 (1983)

    Article  Google Scholar 

  5. Sminchisescu, C., Triggs, B.: Covariance Scaled Sampling for Monocular 3D Body Tracking. In: Proc. CVPR, vol. I, pp. 447–454 (2001)

    Google Scholar 

  6. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  7. Costeira, J.P., Kanade, T.: A Multibody Factorization Method for Independently Moving Objects. IJCV 29(3), 159–179 (1998)

    Article  Google Scholar 

  8. Bregler, C., Hertzmann, A., Biermann, H.: Recovering Non-Rigid 3D Shape from Image Streams. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000) (June 2000)

    Google Scholar 

  9. Brand, M.: Morphable 3D models from video. In: CVPR, vol. II, pp. 456–463 (2001)

    Google Scholar 

  10. Xiao, J., Chai, J.-x., Kanade, T.: A closed-form solution to non-rigid shape and motion recovery. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 573–587. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Ichimura, N.: Motion segmentation based on factorization method and discriminant criterion. In: Proc. IEEE Int. Conf. Computer Vision, pp. 600–605 (1999)

    Google Scholar 

  12. Kanatani, K.: Motion segmentation by subspace separation and model selection:model selection and reliability evaluation. Intl. J. of Image and Graphics 2(2), 179–197 (2002)

    Article  Google Scholar 

  13. Weiss, Y.: Segmentation using eigenvectors: A unifying view. In: International Conference on Computer Vision, Corfu, Greece, September 1999, pp. 975–982 (1999)

    Google Scholar 

  14. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems 14, MIT Press, Cambridge (2002)

    Google Scholar 

  15. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) (2000)

    Google Scholar 

  16. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. IJCV 9(2), 137–154 (1992)

    Article  Google Scholar 

  17. Vidal, R., Hartley, R.: Motion Segmentation with Missing Data using PowerFactorization and GPCA. In: IEEE Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  18. Vidal, R., Ma, Y., Sastry, S.: Generalized Principal Component Analysis (GPCA). In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003) (June 2003)

    Google Scholar 

  19. Vidal, R., Ma, Y., Piazzi, J.: A New GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2004), June 27-July 02 (2004)

    Google Scholar 

  20. Yan, J., Pollefeys, M.: A Factorization-based Approach to Articulated Motion Recovery. In: IEEE Conf. on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  21. Yan, J., Pollefeys, M.: A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 94–106. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Tresadern, P., Reid, I.: Articulated Structure From Motion by Factorization. In: Proc. IEEE Conf on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  23. Golub, G., van Loan, A.: Matrix Computations. Johns Hopkins U. Press (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, J., Pollefeys, M. (2006). Recovering Articulated Non-rigid Shapes, Motions and Kinematic Chains from Video. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2006. Lecture Notes in Computer Science, vol 4069. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11789239_10

Download citation

  • DOI: https://doi.org/10.1007/11789239_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36031-5

  • Online ISBN: 978-3-540-36032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics