[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Selection of Prototype Rules: Context Searching Via Clustering

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2006 (ICAISC 2006)

Abstract

Prototype-based rules are an interesting alternative to fuzzy and crisp logical rules, in many cases providing simpler, more accurate and more comprehensible description of the data. Such rules may be directly converted to fuzzy rules. A new algorithm for generation of prototype-based rules is introduced and a comparison with results obtained by neurofuzzy systems on a number of datasets provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  2. Duch, W.: Similarity based methods: a general framework for classification, approximation and association. Control and Cybernetics 29(4), 937–968 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Duch, W., Adamczak, R., Diercksen, G.H.F.: Classification, Association and Pattern Completion using Neural Similarity Based Methods. Applied Mathematics and Computer Science 10(4), 101–120 (2000)

    Google Scholar 

  4. Duch, W., Setiono, R., Zurada, J.M.: Computational intelligence methods for understanding of data. Proc. of the IEEE 92(5), 771–805 (2004)

    Article  Google Scholar 

  5. Duch, W., Grudziński, K.: Prototype based rules - a new way to understand the data. In: Proc. of IJCNN 2001, Washington D.C., USA, pp. 1858–1863

    Google Scholar 

  6. Duch, W., Blachnik, M.: Fuzzy rule-based system derived from similarity to prototypes. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 912–917. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Nauck, D., Klawonn, F., Kruse, R.: Foundations on Neuro-Fuzzy Systems. Wiley, Chichester (1997)

    Google Scholar 

  8. Jankowski, N., Grochowski, M.: Comparison of Instance Selection Algorithms I. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Grochowski, M., Jankowski, N.: Comparison of Instance Selection Algorithms II. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 580–585. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Bezdek, J.C., Kuncheva, L.I.: Nearest prototype classifier designs: An experimental study. International Journal of Intelligent Systems 16(12), 1445–1473 (2001)

    Article  MATH  Google Scholar 

  11. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Machine Learning 38, 257–268 (2000)

    Article  MATH  Google Scholar 

  12. Pedrycz, W.: Conditional Fuzzy C-Means. Pattern Recognition Letters 17, 625–632 (1996)

    Article  Google Scholar 

  13. Maron, O., Moore, A.: The Racing Algorithm: Model Selection for Lazy Learners. Artificial Intelligence Review 11, 193–225 (1997)

    Article  Google Scholar 

  14. Mertz, C.J., Murphy, P.M.: UCI repository of machine learning databases, http://www.ics.uci.edu/pub/machine-learning-databases

  15. Stanfill, C., Waltz, D.: Toward memory-based reasoning. Communications of the ACM 29(12), 1213–1228 (1986)

    Article  Google Scholar 

  16. Wilson, D.R., Martinez, T.R.: Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research 6 (1997)

    Google Scholar 

  17. Duch, W., Grudziński, K.: Meta-learning via search combined with parameter optimization. In: Intelligent Information Systems, Advances in Soft Computing, pp. 13–22. Physica Verlag (Springer), Heidelberg (2002)

    Google Scholar 

  18. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines (and other kernel-based learning methods). Cambridge University Press, Cambridge (2000)

    Google Scholar 

  19. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, London (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blachnik, M., Duch, W., Wieczorek, T. (2006). Selection of Prototype Rules: Context Searching Via Clustering. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_60

Download citation

  • DOI: https://doi.org/10.1007/11785231_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics