Abstract
Prototype-based rules are an interesting alternative to fuzzy and crisp logical rules, in many cases providing simpler, more accurate and more comprehensible description of the data. Such rules may be directly converted to fuzzy rules. A new algorithm for generation of prototype-based rules is introduced and a comparison with results obtained by neurofuzzy systems on a number of datasets provided.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, New York (2001)
Duch, W.: Similarity based methods: a general framework for classification, approximation and association. Control and Cybernetics 29(4), 937–968 (2000)
Duch, W., Adamczak, R., Diercksen, G.H.F.: Classification, Association and Pattern Completion using Neural Similarity Based Methods. Applied Mathematics and Computer Science 10(4), 101–120 (2000)
Duch, W., Setiono, R., Zurada, J.M.: Computational intelligence methods for understanding of data. Proc. of the IEEE 92(5), 771–805 (2004)
Duch, W., Grudziński, K.: Prototype based rules - a new way to understand the data. In: Proc. of IJCNN 2001, Washington D.C., USA, pp. 1858–1863
Duch, W., Blachnik, M.: Fuzzy rule-based system derived from similarity to prototypes. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 912–917. Springer, Heidelberg (2004)
Nauck, D., Klawonn, F., Kruse, R.: Foundations on Neuro-Fuzzy Systems. Wiley, Chichester (1997)
Jankowski, N., Grochowski, M.: Comparison of Instance Selection Algorithms I. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)
Grochowski, M., Jankowski, N.: Comparison of Instance Selection Algorithms II. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 580–585. Springer, Heidelberg (2004)
Bezdek, J.C., Kuncheva, L.I.: Nearest prototype classifier designs: An experimental study. International Journal of Intelligent Systems 16(12), 1445–1473 (2001)
Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Machine Learning 38, 257–268 (2000)
Pedrycz, W.: Conditional Fuzzy C-Means. Pattern Recognition Letters 17, 625–632 (1996)
Maron, O., Moore, A.: The Racing Algorithm: Model Selection for Lazy Learners. Artificial Intelligence Review 11, 193–225 (1997)
Mertz, C.J., Murphy, P.M.: UCI repository of machine learning databases, http://www.ics.uci.edu/pub/machine-learning-databases
Stanfill, C., Waltz, D.: Toward memory-based reasoning. Communications of the ACM 29(12), 1213–1228 (1986)
Wilson, D.R., Martinez, T.R.: Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research 6 (1997)
Duch, W., Grudziński, K.: Meta-learning via search combined with parameter optimization. In: Intelligent Information Systems, Advances in Soft Computing, pp. 13–22. Physica Verlag (Springer), Heidelberg (2002)
Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines (and other kernel-based learning methods). Cambridge University Press, Cambridge (2000)
Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, London (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blachnik, M., Duch, W., Wieczorek, T. (2006). Selection of Prototype Rules: Context Searching Via Clustering. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_60
Download citation
DOI: https://doi.org/10.1007/11785231_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35748-3
Online ISBN: 978-3-540-35750-6
eBook Packages: Computer ScienceComputer Science (R0)