[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Genetic-Programming-Based Approach for the Learning of Compact Fuzzy Rule-Based Classification Systems

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2006 (ICAISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Included in the following conference series:

Abstract

In the design of an interpretable fuzzy rule-based classification system (FRBCS) the precision as much as the simplicity of the extracted knowledge must be considered as objectives. In any inductive learning algorithm, when we deal with problems with a large number of features, the exponential growth of the fuzzy rule search space makes the learning process more difficult. Moreover it leads to an FRBCS with a rule base with a high cardinality. In this paper, we propose a genetic-programming-based method for the learning of an FRBCS, where disjunctive normal form (DNF) rules compete and cooperate among themselves in order to obtain an understandable and compact set of fuzzy rules, which presents a good classification performance with high dimensionality problems. This proposal uses a token competition mechanism to maintain the diversity of the population. The good results obtained with several classification problems support our proposal.

Supported by the Spanish Ministry of Science and Technology under the Projects TIN-2005-08386-C05-03 and TIN-2005-08386-C05-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Casillas, J., Cordón, O., Herrera, F., Magdalena, L.: Interpretability Issues in Fuzzy Modeling. Series Studies in Fuzziness and Soft Computing, vol. 128. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  2. Chi, Z., Wu, J., Yan, H.: Handwritten numeral recognition using self-organizing maps and fuzzy rules. Pattern Recognition 28(1), 59–66 (1995)

    Article  Google Scholar 

  3. Cordón, O., del Jesus, M.J., Herrera, F.: A Proposal on Reasoning Methods in Fuzzy Rule-Based Classification Systems. International Journal of Approximate Reasoning 20, 21–45 (1999)

    Google Scholar 

  4. Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems. In: Evolutionary tuning and learning of fuzzy knowledge bases, World Scientific, Singapore (2001)

    Google Scholar 

  5. García, S., González, F., Sánchez, L.: Evolving fuzzy based classifiers with GA-P: A grammatical approach. In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598, pp. 203–210. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Geyer-Schulz, A.: Fuzzy rule-based expert systems and genetic machine learning. Physica-Verlag, Heidelberg (1995)

    Google Scholar 

  7. González, A., Pérez, R.: Selection of relevant features in a fuzzy genetic learning algorithm. IEEE Transactions on Systems, Man and Cybernetics Part B 31(3), 417–425 (2001)

    Article  Google Scholar 

  8. González, A., Pérez, R.: SLAVE: A genetic learning system based on an iterative approach. IEEE Transactions on Fuzzy Systems 27, 176–191 (1999)

    Article  Google Scholar 

  9. Ishibuchi, H., Nozaki, K., Tanaka, H.: Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets and Systems 52, 21–32 (1992)

    Article  Google Scholar 

  10. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, N.: Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Systems 3(3), 260–270 (1995)

    Article  Google Scholar 

  11. Kovacs, T.: Strength or Accuracy: Credit Assignment in Learning Classifier Systems. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  12. Koza, J.R.: Genetic programming on the programming of computers by means of natural selection. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  13. Krone, A., Krause, P., Slawinski, T.: A new rule reduction method for finding interpretable and small rule bases in high dimensional search spaces. In: Proc. of the 9th IEEE International Conference on Fuzzy Systems, vol. 2, pp. 694–699 (2000)

    Google Scholar 

  14. Mendes, R.R.F., Voznika, F., de, B., Freitas, A.A., Nievola, J.C.: Discovering Fuzzy Classification Rules with Genetic Programming and Co-evolution. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, p. 314. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  16. Ravi, V., Reddy, P.J., Zimmermann, H.J.: Pattern classification with principal component analysis and fuzzy rule bases. European Journal of Operational Research 126(3), 526–533 (2000)

    Article  MATH  Google Scholar 

  17. Ravi, V., Zimmermann, H.J.: Fuzzy rule based classification with FeatureSelector and modified threshold accepting. European Journal of Operational Research x 126(1), 16–28 (2000)

    Article  MathSciNet  Google Scholar 

  18. Sánchez, L., Couso, I., Corrales, J.A.: Combining GP operators with SA search to evolve fuzzy rule based classifiers. Information Sciences 136(1–4), 175–191 (2001)

    Article  MATH  Google Scholar 

  19. Tsakonas, A., Dounias, G., Jantzen, J., Axer, H., Bjerregaard, B., von Keyserlingk, D.G.: Evolving rule-based systems in two medical domains using genetic programming. Artificial Intelligence in Medicine 32(3), 195–216 (2004)

    Article  Google Scholar 

  20. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics 22(6), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  21. Wong, M.L., Leung, K.S.: Data Mining using grammar based genetic programming and applications. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berlanga, F.J., del Jesus, M.J., Gacto, M.J., Herrera, F. (2006). A Genetic-Programming-Based Approach for the Learning of Compact Fuzzy Rule-Based Classification Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_20

Download citation

  • DOI: https://doi.org/10.1007/11785231_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics