[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Active Contours with Level-Set for Extracting Feature Curves from Triangular Meshes

  • Conference paper
Advances in Computer Graphics (CGI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4035))

Included in the following conference series:

Abstract

In this paper, we present a novel algorithm that extracts feature curves from triangular mesh domains. It is an extension of the level-set formulation of active contour model in image space to triangular mesh domains. We assume that meshes handled by our method are smooth overall, and feature curves of meshes are thin regions rather than mathematical curves such as found in mechanical parts. We use a simple and robust scheme that assigns feature weights to the vertices of a mesh. We define the energy functional of the active contour over the domain of triangular mesh and derive a level-set evolution equation that finds feature regions. The feature regions are skeletonized and smoothed to form a set of smooth feature curves on the mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bischoff, S., Weyand, T., Kobbelt, L.: Snakes on triangular meshes. Bildverarbeitung fur die Medizin, 208–212 (2005)

    Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: On geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  3. Chan, T., Vese, L.: An active contour model without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  4. Gumhold, S., Wang, X., McLeod, R.: Feature extraction from point clouds. In: Proceedings of 10th International Meshing Roundtable, pp. 293–305 (2001)

    Google Scholar 

  5. Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Transcations on Graphics 22(3), 943–949 (2003)

    Article  Google Scholar 

  6. Jung, M., Kim, H.: Snaking across 3D meshes. In: Proceedings of Pacific Graphics, pp. 415–420 (2004)

    Google Scholar 

  7. Kalles, D., Morris, D.: A novel fast and reliable thinning algorithm. Imaging and Vision Computing 11(9), 588–603 (1993)

    Article  Google Scholar 

  8. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1987)

    Article  Google Scholar 

  9. Kobbelt, L.: Discrete fairing. In: Proceedings of 7th IMA Conference on the Mathematics of Surfaces, pp. 101–131 (1997)

    Google Scholar 

  10. Lee, Y., Lee, S.: Geometric snakes for triangular meshes. Computer Graphics Forum 21(3), 229–238 (2002)

    Article  Google Scholar 

  11. Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)

    Article  Google Scholar 

  12. Meyer, M., Desbrun, M., Schroder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Proceedings of International Workshop on Visualization and Mathematics, pp. 35–58 (2002)

    Google Scholar 

  13. Milroy, M., Bradley, C., Vickers, G.: Segmentation of a wrap-around model using an active contour. Computer-Aided Design 29(4), 299–320 (1997)

    Article  Google Scholar 

  14. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pauly, M., Keiser, R., Gross, M.: Multi-scale extraction on point-sampled surfaces. Computer Graphics Forum 22(3), 281–289 (2003)

    Article  Google Scholar 

  16. Pavlidis, T.: A thinning algorithm for discrete binary images. Computer Vision, Graphics and Image Processing 13, 142–157 (1980)

    Article  Google Scholar 

  17. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  18. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 902–907 (1995)

    Google Scholar 

  19. Watanabe, K., Belyaev, A.: Detection of salient curvature features on polygonal surfaces. Computer Graphics Forum 20(3), 385–392 (2001)

    Article  Google Scholar 

  20. Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. Journal of Computational Physics 127(1), 197–195 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Min, K., Metaxas, D.N., Jung, MR. (2006). Active Contours with Level-Set for Extracting Feature Curves from Triangular Meshes. In: Nishita, T., Peng, Q., Seidel, HP. (eds) Advances in Computer Graphics. CGI 2006. Lecture Notes in Computer Science, vol 4035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784203_16

Download citation

  • DOI: https://doi.org/10.1007/11784203_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35638-7

  • Online ISBN: 978-3-540-35639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics