[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Unified Framework for Atlas Based Brain Image Segmentation and Registration

  • Conference paper
Biomedical Image Registration (WBIR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4057))

Included in the following conference series:

  • 1686 Accesses

Abstract

We propose a unified framework in which atlas-based segmentation and non-rigid registration of the atlas and the study image are iteratively solved within a maximum-likelihood expectation maximization (ML-EM) algorithm. Both segmentation and registration processes minimize the same functional, i.e. the log-likelihood, with respect to classification parameters and the spatial transformation. We demonstrate how both processes can be integrated in a mathematically sound and elegant way and which advantages this implies for both segmentation and registration performance. This method (Extended EM, EEM) is evaluated for atlas-based segmentation of MR brain images on real data and compared to the standard EM segmentation algorithm without embedded registration component initialized with an affine registered atlas or after registering the atlas using a mutual information based non-rigid registration algorithm (II).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26, 839–851 (2005)

    Article  Google Scholar 

  2. Hammers, A., Koep, M.J., Free, S.L., Brett, M., Richardson, M.P., Labbé, C., Cunningham, V.J., Brooks, D.J., Duncan, J.: Implementation and application of a brain template for multiple volumes of interest. Human Brain Mapping 15(3), 165–174 (2002)

    Article  Google Scholar 

  3. Wang, Q., Seghers, D., D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P., Hammers, A.: Construction and validation of mean shape atlas templates for atlas-based brain image segmentation. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 689–700. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Chen, X., Brady, M., Rueckert, D.: Simultaneous segmentation and registration for medical image. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 663–670. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. D’Agostino, E., Maes, F., Vandermeulen, D., Fischer, B., Suetens, P.: An information theoretic approach for non-rigid image registration using voxel class probabilities. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 122–131. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multi-modality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  7. D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for multimodal non-rigid image registration using mutual information. Medical Image Analysis 7(4), 565–575 (2003)

    Article  Google Scholar 

  8. D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: An information theoretic approach for non-rigid image registration using voxel class probabilities. Medical Image Analysis (accepted for publication, 2005)

    Google Scholar 

  9. Rohlfing, Russakoff, D.B., Murphy, M.J., Maurer Jr., C.R.: An intensity-based registration algorithm for probabilistic images and its application to 2D-3D image registration. In: Proc. of SPIE: Medical Imaging 2002, San Diego, CA, pp. 581–591 (2002)

    Google Scholar 

  10. Smith, S., Bannister, P., Beckmann, C., Brady, M., Clare, S., Flitney, D., Hansen, P., Jenkinson, M., Leibovici, D., Ripley, B., Woolrich, M., Zhang, Y.: Fsl: New tools for functional and structural brain image analysis. In: Seventh Int. Conf. on Functional Mapping of the Human Brain (2001)

    Google Scholar 

  11. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging 18(10), 897–908 (1999)

    Article  Google Scholar 

  12. Warfield, S.K., Knaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, template moderate, spatially varying statistical classification. Medical Image Analysis 4(1), 43–55 (2000)

    Article  Google Scholar 

  13. Wyatt, P., Alison Noble, J.: Map mrf joint segmentation and registration of medical images. Medical Image Analysis 7(4), 539–552 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P. (2006). A Unified Framework for Atlas Based Brain Image Segmentation and Registration. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds) Biomedical Image Registration. WBIR 2006. Lecture Notes in Computer Science, vol 4057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784012_17

Download citation

  • DOI: https://doi.org/10.1007/11784012_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35648-6

  • Online ISBN: 978-3-540-35649-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics