Abstract
We propose a unified framework in which atlas-based segmentation and non-rigid registration of the atlas and the study image are iteratively solved within a maximum-likelihood expectation maximization (ML-EM) algorithm. Both segmentation and registration processes minimize the same functional, i.e. the log-likelihood, with respect to classification parameters and the spatial transformation. We demonstrate how both processes can be integrated in a mathematically sound and elegant way and which advantages this implies for both segmentation and registration performance. This method (Extended EM, EEM) is evaluated for atlas-based segmentation of MR brain images on real data and compared to the standard EM segmentation algorithm without embedded registration component initialized with an affine registered atlas or after registering the atlas using a mutual information based non-rigid registration algorithm (II).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26, 839–851 (2005)
Hammers, A., Koep, M.J., Free, S.L., Brett, M., Richardson, M.P., Labbé, C., Cunningham, V.J., Brooks, D.J., Duncan, J.: Implementation and application of a brain template for multiple volumes of interest. Human Brain Mapping 15(3), 165–174 (2002)
Wang, Q., Seghers, D., D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P., Hammers, A.: Construction and validation of mean shape atlas templates for atlas-based brain image segmentation. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 689–700. Springer, Heidelberg (2005)
Chen, X., Brady, M., Rueckert, D.: Simultaneous segmentation and registration for medical image. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 663–670. Springer, Heidelberg (2004)
D’Agostino, E., Maes, F., Vandermeulen, D., Fischer, B., Suetens, P.: An information theoretic approach for non-rigid image registration using voxel class probabilities. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 122–131. Springer, Heidelberg (2003)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multi-modality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)
D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for multimodal non-rigid image registration using mutual information. Medical Image Analysis 7(4), 565–575 (2003)
D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: An information theoretic approach for non-rigid image registration using voxel class probabilities. Medical Image Analysis (accepted for publication, 2005)
Rohlfing, Russakoff, D.B., Murphy, M.J., Maurer Jr., C.R.: An intensity-based registration algorithm for probabilistic images and its application to 2D-3D image registration. In: Proc. of SPIE: Medical Imaging 2002, San Diego, CA, pp. 581–591 (2002)
Smith, S., Bannister, P., Beckmann, C., Brady, M., Clare, S., Flitney, D., Hansen, P., Jenkinson, M., Leibovici, D., Ripley, B., Woolrich, M., Zhang, Y.: Fsl: New tools for functional and structural brain image analysis. In: Seventh Int. Conf. on Functional Mapping of the Human Brain (2001)
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging 18(10), 897–908 (1999)
Warfield, S.K., Knaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, template moderate, spatially varying statistical classification. Medical Image Analysis 4(1), 43–55 (2000)
Wyatt, P., Alison Noble, J.: Map mrf joint segmentation and registration of medical images. Medical Image Analysis 7(4), 539–552 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P. (2006). A Unified Framework for Atlas Based Brain Image Segmentation and Registration. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds) Biomedical Image Registration. WBIR 2006. Lecture Notes in Computer Science, vol 4057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784012_17
Download citation
DOI: https://doi.org/10.1007/11784012_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35648-6
Online ISBN: 978-3-540-35649-3
eBook Packages: Computer ScienceComputer Science (R0)