[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

3-Designs from Z 4-Goethals-Like Codes and Variants of Cyclotomic Polynomials

  • Conference paper
Coding and Cryptography (WCC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3969))

Included in the following conference series:

Abstract

We construct a family of simple 3-(2m,8,14(2m–8)/3) designs, with odd m≥5, from all Z 4-Goethals-like codes \({\mathcal{G}}_k\) with k=2l and l≥1. In addition, these designs imply also the existence of the other design families constructed from the Z 4-Goethals codes \({\mathcal{G}}_1\) by Ranto. In the existence proofs we count the number of solutions to certain systems of equations over finite fields and use Dickson polynomials and variants of cyclotomic polynomials and identities connecting them.

Part of the results have been published in the dissertation of the second author [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Charpin, P.: Open problems on cyclic codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, ch. 11, vol. I, pp. 963–1063. Elsevier, Amsterdam (1998)

    Google Scholar 

  2. Cohen, S.D., Matthews, R.W.: Exceptional polynomials over finite fields. Finite Fields Appl. 1(3), 261–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Goss, D.: Basic Structures of Function Field Arithmetic, 2nd edn. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  4. Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The ℤ4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Helleseth, T., Kumar, P.V.: The algebraic decoding of the Z 4-linear Goethals code. IEEE Trans. Inform. Theory 41(6), 2040–2048 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Helleseth, T., Kumar, P.V., Shanbhag, A.: Codes with the same weight distributions as the Goethals codes and the Delsarte-Goethals codes. Des. Codes Cryptogr. 9(3), 257–266 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Helleseth, T., Lahtonen, J., Ranto, K.: A simple proof to the minimum distance of Z 4-linear Goethals-like codes. J. Complexity 20(2–3), 297–304 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Helleseth, T., Rong, C., Yang, K.: On t-designs from codes over Z 4. Discrete Math. 238, 67–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lahtonen, J., Ranto, K., Vehkalahti, R.: 3-Designs from all Z 4-Goethals-like codes with block size 7 and 8. Finite Fields Appl. (to appear, 2005)

    Google Scholar 

  10. Lidl, R., Mullen, G.L., Turnwald, G.: Dickson Polynomials. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 65. Longman Scientific & Technical, Harlow (1993)

    MATH  Google Scholar 

  11. Ranto, K.: On algebraic decoding of the Z 4-linear Goethals-like codes. IEEE Trans. Inform. Theory 46(6), 2193–2197 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ranto, K.: Infinite families of 3-designs from Z 4-Goethals codes with block size 8. SIAM J. Discrete Math. 15(3), 289–304 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ranto, K.: Z 4-Goethals Codes, Decoding and Designs. PhD thesis, University of Turku (October 2002), http://www.tucs.fi/publications/insight.php?id=phdRanto02a

  14. Shin, D.-J., Kumar, P.V., Helleseth, T.: 3-Designs from the Z 4-Goethals codes via a new Kloosterman sum identity. Des. Codes Cryptogr. 28(3), 247–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lahtonen, J., Ranto, K., Vehkalahti, R. (2006). 3-Designs from Z 4-Goethals-Like Codes and Variants of Cyclotomic Polynomials. In: Ytrehus, Ø. (eds) Coding and Cryptography. WCC 2005. Lecture Notes in Computer Science, vol 3969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11779360_6

Download citation

  • DOI: https://doi.org/10.1007/11779360_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35481-9

  • Online ISBN: 978-3-540-35482-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics