Abstract
We construct a family of simple 3-(2m,8,14(2m–8)/3) designs, with odd m≥5, from all Z 4-Goethals-like codes \({\mathcal{G}}_k\) with k=2l and l≥1. In addition, these designs imply also the existence of the other design families constructed from the Z 4-Goethals codes \({\mathcal{G}}_1\) by Ranto. In the existence proofs we count the number of solutions to certain systems of equations over finite fields and use Dickson polynomials and variants of cyclotomic polynomials and identities connecting them.
Part of the results have been published in the dissertation of the second author [13].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Charpin, P.: Open problems on cyclic codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, ch. 11, vol. I, pp. 963–1063. Elsevier, Amsterdam (1998)
Cohen, S.D., Matthews, R.W.: Exceptional polynomials over finite fields. Finite Fields Appl. 1(3), 261–277 (1995)
Goss, D.: Basic Structures of Function Field Arithmetic, 2nd edn. Springer, Heidelberg (1998)
Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The ℤ4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)
Helleseth, T., Kumar, P.V.: The algebraic decoding of the Z 4-linear Goethals code. IEEE Trans. Inform. Theory 41(6), 2040–2048 (1995)
Helleseth, T., Kumar, P.V., Shanbhag, A.: Codes with the same weight distributions as the Goethals codes and the Delsarte-Goethals codes. Des. Codes Cryptogr. 9(3), 257–266 (1996)
Helleseth, T., Lahtonen, J., Ranto, K.: A simple proof to the minimum distance of Z 4-linear Goethals-like codes. J. Complexity 20(2–3), 297–304 (2004)
Helleseth, T., Rong, C., Yang, K.: On t-designs from codes over Z 4. Discrete Math. 238, 67–80 (2001)
Lahtonen, J., Ranto, K., Vehkalahti, R.: 3-Designs from all Z 4-Goethals-like codes with block size 7 and 8. Finite Fields Appl. (to appear, 2005)
Lidl, R., Mullen, G.L., Turnwald, G.: Dickson Polynomials. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 65. Longman Scientific & Technical, Harlow (1993)
Ranto, K.: On algebraic decoding of the Z 4-linear Goethals-like codes. IEEE Trans. Inform. Theory 46(6), 2193–2197 (2000)
Ranto, K.: Infinite families of 3-designs from Z 4-Goethals codes with block size 8. SIAM J. Discrete Math. 15(3), 289–304 (2002)
Ranto, K.: Z 4-Goethals Codes, Decoding and Designs. PhD thesis, University of Turku (October 2002), http://www.tucs.fi/publications/insight.php?id=phdRanto02a
Shin, D.-J., Kumar, P.V., Helleseth, T.: 3-Designs from the Z 4-Goethals codes via a new Kloosterman sum identity. Des. Codes Cryptogr. 28(3), 247–263 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lahtonen, J., Ranto, K., Vehkalahti, R. (2006). 3-Designs from Z 4-Goethals-Like Codes and Variants of Cyclotomic Polynomials. In: Ytrehus, Ø. (eds) Coding and Cryptography. WCC 2005. Lecture Notes in Computer Science, vol 3969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11779360_6
Download citation
DOI: https://doi.org/10.1007/11779360_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35481-9
Online ISBN: 978-3-540-35482-6
eBook Packages: Computer ScienceComputer Science (R0)