[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Welch–Berlekamp Like Algorithm for Decoding Gabidulin Codes

  • Conference paper
Coding and Cryptography (WCC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3969))

Included in the following conference series:

Abstract

In this paper, we present a new approach of the decoding of Gabidulin codes. We show that, in the same way as decoding Reed-Solomon codes is an instance of the problem called polynomial reconstruction, the decoding of Gabidulin codes can be seen as an instance of the problem of reconstruction of linearized polynomials. This approach leads to the design of two efficient decoding algorithms inspired from the Welch–Berlekamp decoding algorithm for Reed–Solomon codes. The first algorithm has the same complexity as the existing ones, that is cubic in the number of errors, whereas the second has quadratic complexity in 2.5n 2 – 1.5k 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berlekamp, E.R., Welch, L.: Error correction of algebraic block codes. US Patent, Number 4,633,470 (1986)

    Google Scholar 

  2. Chabaud, F., Stern, J.: The cryptographic security of the syndrome decoding problem for rank distance codes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163. Springer, Heidelberg (1996)

    Google Scholar 

  3. Gabidulin, E.M.: Theory of codes with maximal rank distance. Problems of Information Transmission 21, 1–12 (1985)

    MathSciNet  MATH  Google Scholar 

  4. Gabidulin, E.M.: A fast matrix decoding algorithm for rank-error correcting codes. In: Lobstein, A., Litsyn, S.N., Zémor, G., Cohen, G. (eds.) Algebraic Coding 1991. LNCS, vol. 573, pp. 126–133. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  5. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  6. Loidreau, P.: Sur la reconstruction des polynômes linéaires: un nouvel algorithme de décodage des codes de Gabidulin. Comptes Rendus de l’Académie des Sciences: Série I 339(10), 745–750 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ore, Ø.: On a special class of polynomials. Transactions of the American Mathematical Society 35, 559–584 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ore, Ø.: Contribution to the theory of finite fields. Transactions of the American Mathematical Society 36, 243–274 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ourivski, A., Johannson, T.: New technique for decoding codes in the rank metric and its cryptography applications. Problems of Information Transmission 38(3), 237–246 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Richter, G., Plass, S.: Error and erasure decoding of rank-codes with a modified Berlekamp-Massey algorithm. In: 5th Int. ITG Conference on Source and Channel Coding (SCC 2004) (2004)

    Google Scholar 

  11. Roth, R.M.: Maximum-Rank array codes and their application to crisscross error correction. IEEE Transactions on Information Theory 37(2), 328–336 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sudan, M.: Decoding Reed-Solomon codes beyond the error-correction diameter. In: Proceedings of the 35th Annual Allerton Conference on Communication, Control and Computing, pp. 215–224 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loidreau, P. (2006). A Welch–Berlekamp Like Algorithm for Decoding Gabidulin Codes. In: Ytrehus, Ø. (eds) Coding and Cryptography. WCC 2005. Lecture Notes in Computer Science, vol 3969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11779360_4

Download citation

  • DOI: https://doi.org/10.1007/11779360_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35481-9

  • Online ISBN: 978-3-540-35482-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics