Abstract
In this paper we present a new public key cryptosystem whose security relies on the intractability of the problem of reconstructing p–polynomials. This is a cryptosystem inspired from the Augot–Finiasz cryptosystem published at Eurocrypt 2003. Though this system was broken by Coron, we show However, in our case, we show how these attacks can be avoided, thanks to properties of rank metric and p–polynomials. Therefore, public-keys of relatively small size can be proposed (less than 4000 bits).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Augot, D., Finiasz, M.: A public key encryption scheme bases on the polynomial reconstruction problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 222–233. Springer, Heidelberg (2003)
Augot, D., Finiasz, M., Loidreau, P.: Using the trace operator to repair the polynomial reconstruction based cryptosystem presented at eurocrypt 2003, Cryptology ePrint Archive, Report 2003/209 (2003), http://eprint.iacr.org/
Berger, T., Loidreau, P.: Designing an efficient and secure public-key cryptosystem based on reducible rank codes. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 218–229. Springer, Heidelberg (2004)
Coron, J.-S.: Cryptanalysis of a public-key encryption scheme based on the polynomial reconstruction problem. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 14–28. Springer, Heidelberg (2004)
Faure, C.: Etude d’un systéme de chiffrement á clé publique fondé sur le probléme de reconstruction de polynômes linéaires. Master’s thesis, Université Paris 7 (2004)
Gabidulin, E.M.: Theory of codes with maximal rank distance. Problems of Information Transmission 21, 1–12 (1985)
Gabidulin, E.M.: A fast matrix decoding algorithm for rank-error correcting codes. In: Lobstein, A., Litsyn, S.N., Zémor, G., Cohen, G. (eds.) Algebraic Coding 1991. LNCS, vol. 573, pp. 126–133. Springer, Heidelberg (1992)
Kiayias, A., Yung, M.: Cryptanalyzing the polynomial-reconstruction based public-key system under optimal parameter choice. Cryptology ePrint Archive, Report, 2004/217 (2004), http://eprint.iacr.org/
Loidreau, P.: Sur la reconstruction des polynômes linéaires: un nouvel algorithme de décodage des codes de Gabidulin. Comptes Rendus de l’Académie des Sciences: Série I 339(10), 745–750 (2004)
Øre, Ö.: On a special class of polynomials. Transactions of the American Mathematical Society 35, 559–584 (1933)
Øre, Ö.: Contribution to the theory of finite fields. Transactions of the American Mathematical Society 36, 243–274 (1934)
Ourivski, A., Johannson, T.: New technique for decoding codes in the rank metric and its cryptography applications. Problems of Information Transmission 38(3), 237–246 (2002)
Richter, G., Plass, S.: Error and erasure decoding of rank-codes with a modified Berlekamp-Massey algorithm. In: 5th Int. ITG Conference on Source and Channel Coding (SCC 2004) (2004)
Roth, R.M.: Maximum-Rank array codes and their application to crisscross error correction. IEEE Transactions on Information Theory 37(2), 328–336 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Faure, C., Loidreau, P. (2006). A New Public-Key Cryptosystem Based on the Problem of Reconstructing p–Polynomials. In: Ytrehus, Ø. (eds) Coding and Cryptography. WCC 2005. Lecture Notes in Computer Science, vol 3969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11779360_24
Download citation
DOI: https://doi.org/10.1007/11779360_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35481-9
Online ISBN: 978-3-540-35482-6
eBook Packages: Computer ScienceComputer Science (R0)