[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Public-Key Cryptosystem Based on the Problem of Reconstructing p–Polynomials

  • Conference paper
Coding and Cryptography (WCC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3969))

Included in the following conference series:

Abstract

In this paper we present a new public key cryptosystem whose security relies on the intractability of the problem of reconstructing p–polynomials. This is a cryptosystem inspired from the Augot–Finiasz cryptosystem published at Eurocrypt 2003. Though this system was broken by Coron, we show However, in our case, we show how these attacks can be avoided, thanks to properties of rank metric and p–polynomials. Therefore, public-keys of relatively small size can be proposed (less than 4000 bits).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Augot, D., Finiasz, M.: A public key encryption scheme bases on the polynomial reconstruction problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 222–233. Springer, Heidelberg (2003)

    Google Scholar 

  2. Augot, D., Finiasz, M., Loidreau, P.: Using the trace operator to repair the polynomial reconstruction based cryptosystem presented at eurocrypt 2003, Cryptology ePrint Archive, Report 2003/209 (2003), http://eprint.iacr.org/

  3. Berger, T., Loidreau, P.: Designing an efficient and secure public-key cryptosystem based on reducible rank codes. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 218–229. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Coron, J.-S.: Cryptanalysis of a public-key encryption scheme based on the polynomial reconstruction problem. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 14–28. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Faure, C.: Etude d’un systéme de chiffrement á clé publique fondé sur le probléme de reconstruction de polynômes linéaires. Master’s thesis, Université Paris 7 (2004)

    Google Scholar 

  6. Gabidulin, E.M.: Theory of codes with maximal rank distance. Problems of Information Transmission 21, 1–12 (1985)

    MathSciNet  MATH  Google Scholar 

  7. Gabidulin, E.M.: A fast matrix decoding algorithm for rank-error correcting codes. In: Lobstein, A., Litsyn, S.N., Zémor, G., Cohen, G. (eds.) Algebraic Coding 1991. LNCS, vol. 573, pp. 126–133. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  8. Kiayias, A., Yung, M.: Cryptanalyzing the polynomial-reconstruction based public-key system under optimal parameter choice. Cryptology ePrint Archive, Report, 2004/217 (2004), http://eprint.iacr.org/

  9. Loidreau, P.: Sur la reconstruction des polynômes linéaires: un nouvel algorithme de décodage des codes de Gabidulin. Comptes Rendus de l’Académie des Sciences: Série I 339(10), 745–750 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Øre, Ö.: On a special class of polynomials. Transactions of the American Mathematical Society 35, 559–584 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  11. Øre, Ö.: Contribution to the theory of finite fields. Transactions of the American Mathematical Society 36, 243–274 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ourivski, A., Johannson, T.: New technique for decoding codes in the rank metric and its cryptography applications. Problems of Information Transmission 38(3), 237–246 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Richter, G., Plass, S.: Error and erasure decoding of rank-codes with a modified Berlekamp-Massey algorithm. In: 5th Int. ITG Conference on Source and Channel Coding (SCC 2004) (2004)

    Google Scholar 

  14. Roth, R.M.: Maximum-Rank array codes and their application to crisscross error correction. IEEE Transactions on Information Theory 37(2), 328–336 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faure, C., Loidreau, P. (2006). A New Public-Key Cryptosystem Based on the Problem of Reconstructing p–Polynomials. In: Ytrehus, Ø. (eds) Coding and Cryptography. WCC 2005. Lecture Notes in Computer Science, vol 3969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11779360_24

Download citation

  • DOI: https://doi.org/10.1007/11779360_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35481-9

  • Online ISBN: 978-3-540-35482-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics