Abstract
We propose a Locality-Convolution (LC) kernel in application to dependency parse ranking. The LC kernel measures parse similarities locally, within a small window constructed around each matching feature. Inside the window it makes use of a position sensitive function to take into account the order of the feature appearance. The similarity between two windows is calculated by computing the product of their common attributes and the kernel value is the sum of the window similarities. We applied the introduced kernel together with Regularized Least-Squares (RLS) algorithm to a dataset containing dependency parses obtained from a manually annotated biomedical corpus of 1100 sentences. Our experiments show that RLS with LC kernel performs better than the baseline method. The results outline the importance of local correlations and the order of feature appearance within the parse. Final validation demonstrates statistically significant increase in parse ranking performance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)
Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)
Collins, M., Duffy, N.: Convolution kernels for natural language. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) NIPS, pp. 625–632. MIT Press, Cambridge (2001)
Suzuki, J., Hirao, T., Sasaki, Y., Maeda, E.: Hierarchical directed acyclic graph kernel: Methods for structured natural language data. In: ACL, pp. 32–39 (2003)
Suzuki, J., Isozaki, H., Maeda, E.: Convolution kernels with feature selection for natural language processing tasks. In: ACL, pp. 119–126 (2004)
Sleator, D.D., Temperley, D.: Parsing english with a link grammar. Technical Report CMU-CS-91-196, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA (1991)
Pyysalo, S., Ginter, F., Pahikkala, T., Boberg, J., Järvinen, J., Salakoski, T., Koivula, J.: Analysis of link grammar on biomedical dependency corpus targeted at protein-protein interactions. In: Collier, N., Ruch, P., Nazarenko, A. (eds.) Proceedings of the JNLPBA workshop at COLING 2004, Geneva, pp. 15–21 (2004)
Tsivtsivadze, E., Pahikkala, T., Pyysalo, S., Boberg, J., Mylläri, A., Salakoski, T.: Regularized least-squares for parse ranking. In: Proceedings of the 6th International Symposium on Intelligent Data Analysis, pp. 464–474. Springer, Heidelberg (2005)
Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Amer. Math. Soc. Notice 50, 537–544 (2003)
Kendall, M.G.: Rank Correlation Methods, 4th edn. Griffin, London (1970)
Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, UC Santa Cruz (1999)
Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, R. (eds.) Proceedings of the 14th Annual Conference on Computational Learning Theory and and 5th European Conference on Computational Learning Theory, pp. 416–426. Springer, Berlin (2001)
Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.J.C.H.: Text classification using string kernels. Journal of Machine Learning Research 2, 419–444 (2002)
Pahikkala, T., Pyysalo, S., Ginter, F., Boberg, J., Järvinen, J., Salakoski, T.: Kernels incorporating word positional information in natural language disambiguation tasks. In: Russell, I., Markov, Z. (eds.) Proceedings of the Eighteenth International Florida Artificial Intelligence Research Society Conference, pp. 442–447. AAAI Press, Menlo Park (2005), http://www.aaai.org/
Pahikkala, T., Pyysalo, S., Boberg, J., Mylläri, A., Salakoski, T.: Improving the performance of bayesian and support vector classifiers in word sense disambiguation using positional information. In: Honkela, T., Könönen, V., Pöllä, M., Simula, O. (eds.) Proceedings of the International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning, Espoo, Finland, Helsinki University of Technology, pp. 90–97 (2005)
Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T., Muller, K.R.: Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16, 799–807 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tsivtsivadze, E., Pahikkala, T., Boberg, J., Salakoski, T. (2006). Locality-Convolution Kernel and Its Application to Dependency Parse Ranking. In: Ali, M., Dapoigny, R. (eds) Advances in Applied Artificial Intelligence. IEA/AIE 2006. Lecture Notes in Computer Science(), vol 4031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11779568_66
Download citation
DOI: https://doi.org/10.1007/11779568_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35453-6
Online ISBN: 978-3-540-35454-3
eBook Packages: Computer ScienceComputer Science (R0)