Abstract
Precise flood forecasting is desirable so as to have more lead time for taking appropriate prevention measures as well as evacuation actions. Although conceptual prediction models have apparent advantages in assisting physical understandings of the hydrological process, the spatial and temporal variability of characteristics of watershed and the number of variables involved in the modeling of the physical processes render them difficult to be manipulated other than by specialists. In this study, two hybrid models, namely, based on genetic algorithm-based artificial neural network and adaptive-network-based fuzzy inference system algorithms, are employed for flood forecasting in a channel reach of the Yangtze River. The new contributions made by this paper are the application of these two algorithms on flood forecasting problems in real prototype cases and the comparison of their performances with a benchmarking linear regression model in this field. It is found that these hybrid algorithms with a “black-box” approach are worthy tools since they not only explore a new solution approach but also demonstrate good accuracy performance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chau, K.W., Jiang, Y.W.: 3D Numerical Model for Pearl River Estuary. Journal of Hydraulic Engineering ASCE 127(1), 72–82 (2001)
Chau, K.W., Jin, H.S.: Numerical Solution of Two-Layer, Two-Dimensional Tidal Flow in a Boundary Fitted Orthogonal Curvilinear Coordinate System. International Journal for Numerical Methods in Fluids 21(11), 1087–1107 (1995)
Chau, K.W., Jin, H.S., Sin, Y.S.: A Finite Difference Model of Two-Dimensional Tidal Flow in Tolo Harbor, Hong Kong. Applied Mathematical Modelling 20(4), 321–328 (1996)
Chau, K.W., Lee, J.H.W.: Mathematical Modelling of Shing Mun River Network. Advances in Water Resources 14(3), 101–124 (1991)
Chau, K.W., Lee, J.H.W.: A Microcomputer Model for Flood Prediction with Application. Microcomputers in Civil Engineering 6(2), 109–121 (1991)
Smith, J., Eli, R.N.: Neural-Network Models of Rainfall-Runoff Process. Journal of Water Resources Planning and Management, ASCE 121(6), 499–508 (1995)
Tokar, A.S., Johnson, P.A.: Rainfall-Runoff Modeling using Artificial Neural Networks. Journal of Hydrologic Engineering, ASCE 4(3), 232–239 (1999)
Liong, S.Y., Lim, W.H., Paudyal, G.N.: River Stage Forecasting in Bangladesh: Neural Network Approach. Journal of Computing in Civil Engineering, ASCE 14(1), 1–8 (2000)
Cheng, C.T., Chau, K.W.: Fuzzy Iteration Methodology for Reservoir Flood Control Operation. Journal of the American Water Resources Association 37(5), 1381–1388 (2001)
Chau, K.W., Cheng, C.T.: Real-time Prediction of Water Stage with Artificial Neural Network Approach. In: McKay, B., Slaney, J.K. (eds.) Canadian AI 2002. LNCS, vol. 2557, pp. 715–715. Springer, Heidelberg (2002)
Chau, K.W.: Calibration of Flow and Water Quality Modeling using Genetic Algorithm. In: McKay, B., Slaney, J.K. (eds.) Canadian AI 2002. LNCS, vol. 2557, p. 720. Springer, Heidelberg (2002)
Cheng, C.T., Ou, C.P., Chau, K.W.: Combining a Fuzzy Optimal Model with a Genetic Algorithm to solve Multiobjective Rainfall-Runoff Model Calibration. Journal of Hydrology 268(1-4), 72–86 (2002)
Chau, K.W.: River Stage Forecasting with Particle Swarm Optimization. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS, vol. 3029, pp. 1166–1173. Springer, Heidelberg (2004)
Chau, K.W.: Rainfall-Runoff Correlation with Particle Swarm Optimization Algorithm. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 970–975. Springer, Heidelberg (2004)
Cheng, C.T., Chau, K.W., Sun, Y.G., Lin, J.Y.: Long-Term Prediction of Discharges in Manwan Reservoir using Artificial Neural Network Models. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3498, pp. 1040–1045. Springer, Heidelberg (2005)
Goldberg, D.E., Kuo, C.H.: Genetic Algorithms in Pipeline Optimization. Journal of Computing in Civil Engineering ASCE 1(2), 128–141 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wu, C.L., Chau, K.W. (2006). Evaluation of Several Algorithms in Forecasting Flood. In: Ali, M., Dapoigny, R. (eds) Advances in Applied Artificial Intelligence. IEA/AIE 2006. Lecture Notes in Computer Science(), vol 4031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11779568_14
Download citation
DOI: https://doi.org/10.1007/11779568_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35453-6
Online ISBN: 978-3-540-35454-3
eBook Packages: Computer ScienceComputer Science (R0)