[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Sanitization of Databases for Refined Privacy Trade-Offs

  • Conference paper
Intelligence and Security Informatics (ISI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3975))

Included in the following conference series:

Abstract

In this paper, we propose a new heuristic algorithm called the QIBC algorithm that improves the privacy of sensitive knowledge (as itemsets) by blocking more inference channels. We show that the existing sanitizing algorithms for such task have fundamental drawbacks. We show that previous methods remove more knowledge than necessary for unjustified reasons or heuristically attempt to remove the minimum frequent non-sensitive knowledge but leave open inference channels that lead to discovery of hidden sensitive knowledge. We formalize the refined problem and prove it is NP-hard. Finally, experimental results show the practicality of the new QIBC algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dictionary.com, http://dictionary.reference.com/

  2. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. of the ACM SIGMOD Conference on Management of Data, Washington D.C, USA, May 1993, pp. 207–216 (1993)

    Google Scholar 

  3. Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure limitation of sensitive rules. In: Proc. of 1999 IEEE Knowledge and Data Engineering Exchange Workshop (KDEX 1999), Chicago, IL, November 1999, pp. 45–52 (1999)

    Google Scholar 

  4. Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: Using association rules for product assortment decisions: a case study. In: Knowledge Discovery and Data Mining, pp. 254–260 (1999)

    Google Scholar 

  5. Clifton, C., Kantarcioglu, M., Vaidya, J.: Defining privacy for data mining. In: Proc. of the National Science Foundation Workshop on Next Generation Data Mining, Baltimore, MD, USA, November 2002, pp. 126–133 (2002)

    Google Scholar 

  6. Farkas, C., Jajodia, S.: The inference problem: a survey. In: Proc. of the ACM SIGKDD Explorations Newsletter, New York, NY, USA, vol. 4, pp. 6–11. ACM Press, New York (2002)

    Google Scholar 

  7. Han, J.M.: Data Mining: Concepts and Techniques (2001)

    Google Scholar 

  8. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) Proceedings of CRYPTO 2000 Advances in Cyptology, Santa Barbara, California, USA, August 20-24, pp. 36–54 (2000)

    Google Scholar 

  9. Oliveira, S.R.M., Zaïane, O.R., Saygın, Y.: Secure association rule sharing. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 74–85. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

HajYasien, A., Estivill-Castro, V., Topor, R. (2006). Sanitization of Databases for Refined Privacy Trade-Offs. In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, FY. (eds) Intelligence and Security Informatics. ISI 2006. Lecture Notes in Computer Science, vol 3975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760146_51

Download citation

  • DOI: https://doi.org/10.1007/11760146_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34478-0

  • Online ISBN: 978-3-540-34479-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics