[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Clause Shortening Combined with Pruning Yields a New Upper Bound for Deterministic SAT Algorithms

  • Conference paper
Algorithms and Complexity (CIAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3998))

Included in the following conference series:

Abstract

We give a deterministic algorithm for testing satisfiability of Boolean formulas in conjunctive normal form with no restriction on clause length. Its upper bound on the worst-case running time matches the best known upper bound for randomized satisfiability-testing algorithms [6]. In comparison with the randomized algorithm in [6], our deterministic algorithm is simpler and more intuitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  2. Brueggemann, T., Kern, W.: An improved local search algorithm for 3-SAT. Theoretical Computer Science 329(1-3), 303–313 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dantsin, E., Hirsch, E.A., Wolpert, A.: Algorithms for SAT based on search in Hamming balls. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 141–151. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Dantsin, E., Wolpert, A.: Derandomization of Schuler’s algorithm for SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 80–88. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Dantsin, E., Wolpert, A.: A faster clause-shortening algorithm for SAT with no restriction on clause length. Journal on Satisfiability, Boolean Modeling and Computation 1, 49–60 (2005)

    Google Scholar 

  7. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, January 2004, p. 328 (2004)

    Google Scholar 

  8. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-SAT. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1998, pp. 628–637 (1998)

    Google Scholar 

  9. Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. In: Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1997, pp. 566–574 (1997)

    Google Scholar 

  10. Pudlák, P.: Satisfiability – algorithms and logic. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 129–141. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1999, pp. 410–414 (1999)

    Google Scholar 

  12. Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive normal form. Journal of Algorithms 54(1), 40–44 (2003), A preliminary version appeared as a technical report in 2003

    Google Scholar 

  13. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Wadsworth & Brooks/Cole (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dantsin, E., Hirsch, E.A., Wolpert, A. (2006). Clause Shortening Combined with Pruning Yields a New Upper Bound for Deterministic SAT Algorithms. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds) Algorithms and Complexity. CIAC 2006. Lecture Notes in Computer Science, vol 3998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758471_9

Download citation

  • DOI: https://doi.org/10.1007/11758471_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34375-2

  • Online ISBN: 978-3-540-34378-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics