Abstract
We give a deterministic algorithm for testing satisfiability of Boolean formulas in conjunctive normal form with no restriction on clause length. Its upper bound on the worst-case running time matches the best known upper bound for randomized satisfiability-testing algorithms [6]. In comparison with the randomized algorithm in [6], our deterministic algorithm is simpler and more intuitive.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)
Brueggemann, T., Kern, W.: An improved local search algorithm for 3-SAT. Theoretical Computer Science 329(1-3), 303–313 (2004)
Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)
Dantsin, E., Hirsch, E.A., Wolpert, A.: Algorithms for SAT based on search in Hamming balls. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 141–151. Springer, Heidelberg (2004)
Dantsin, E., Wolpert, A.: Derandomization of Schuler’s algorithm for SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 80–88. Springer, Heidelberg (2005)
Dantsin, E., Wolpert, A.: A faster clause-shortening algorithm for SAT with no restriction on clause length. Journal on Satisfiability, Boolean Modeling and Computation 1, 49–60 (2005)
Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, January 2004, p. 328 (2004)
Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-SAT. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1998, pp. 628–637 (1998)
Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. In: Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1997, pp. 566–574 (1997)
Pudlák, P.: Satisfiability – algorithms and logic. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 129–141. Springer, Heidelberg (1998)
Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1999, pp. 410–414 (1999)
Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive normal form. Journal of Algorithms 54(1), 40–44 (2003), A preliminary version appeared as a technical report in 2003
Stanley, R.P.: Enumerative Combinatorics, vol. 1. Wadsworth & Brooks/Cole (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dantsin, E., Hirsch, E.A., Wolpert, A. (2006). Clause Shortening Combined with Pruning Yields a New Upper Bound for Deterministic SAT Algorithms. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds) Algorithms and Complexity. CIAC 2006. Lecture Notes in Computer Science, vol 3998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758471_9
Download citation
DOI: https://doi.org/10.1007/11758471_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34375-2
Online ISBN: 978-3-540-34378-3
eBook Packages: Computer ScienceComputer Science (R0)