Abstract
We show that the number of all solutions of minimum weight exact satisfiability can be found in O(n 2.||C||+20.40567 n) time, for a CNF formula C containing n propositional variables equipped with arbitrary real-valued weights. In recent years merely the unweighted counterpart of this problem has been studied [2, 3, 7].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aspvall, B., Plass, M.R., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inform. Process. Lett. 8, 121–123 (1979)
Dahllöf, V., Jonsson, P.: An Algorithm for Counting Maximum Weighted Independent Sets and its Applications. In: Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 292–298 (2002)
Dahllöf, V., Jonsson, P., Beigel, R.: Algorithms for four variants of the exact satisfiability problem. Theoretical Comp. Sci. 320, 373–394 (2004)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)
Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On Generating All Maximal Independent Sets. Inform. Process. Lett. 27, 119–123 (1988)
Monien, B., Speckenmeyer, E., Vornberger, O.: Upper Bounds for Covering Problems. Methods of Operations Research 43, 419–431 (1981)
Porschen, S.: On Some Weighted Satisfiability and Graph Problems. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 278–287. Springer, Heidelberg (2005)
Porschen, S.: Solving Minimum Weight Exact Satisfiability in Time O(20.2441n). In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 654–664. Springer, Heidelberg (2005)
Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th ACM Symposium on Theory of Computing, pp. 216–226 (1978)
Valiant, L.: The complexity of enumeration and reliability problems. SIAM J. Comput. 9, 410–421 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Porschen, S. (2006). Counting All Solutions of Minimum Weight Exact Satisfiability. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds) Algorithms and Complexity. CIAC 2006. Lecture Notes in Computer Science, vol 3998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758471_8
Download citation
DOI: https://doi.org/10.1007/11758471_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34375-2
Online ISBN: 978-3-540-34378-3
eBook Packages: Computer ScienceComputer Science (R0)