[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Distributed Approximation Algorithms for Planar Graphs

  • Conference paper
Algorithms and Complexity (CIAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3998))

Included in the following conference series:

Abstract

In this paper we construct two distributed algorithms for computing approximations of a largest matching and a minimum dominating set in planar graphs on n vertices. The approximation ratio in both cases approaches one with n tending to infinity and the number of synchronous communication rounds is poly-logarithmic in n. Our algorithms are purely deterministic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network Decomposition and Locality in Distributed Computation. In: Proc. 30th IEEE Symp. on Foundations of Computer Science, pp. 364–369 (1989)

    Google Scholar 

  2. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Information and Control 70, 32–53 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Czygrinow, A., Hańćkowiak, M.: Distributed Algorithm for Better Approximation of the Maximum Matching. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 242–251. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Czygrinow, A., Hańćkowiak, M.: Distributed algorithms for weighted problems in sparse graphs. To appear in Journal of Discrete Algorithms (in Press) (Available online September 7, 2005)

    Google Scholar 

  5. Czygrinow, A., Hańćkowiak, M., Szymańska, E.: Distributed algorithm for approximating the maximum matching. Discrete Applied Mathematics 143(1-3), 62–71 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Czygrinow, A., Hańćkowiak, M., Szymańska, E.: A fast distributed algorithm for approximating the maximum matching. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 252–263. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan, A.: Fast Distributed Algorithms for (Weakly) Connected Dominating Sets and Linear-Size Skeletons. In: Proc. of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 717–724 (2003)

    Google Scholar 

  8. Elkin, M.: An Overview of Distributed Approximation. ACM SIGACT News Distributed Computing Column 35(4) (Whole number 132), 40–57 (2004)

    Google Scholar 

  9. Hakimi, S., Mitchem, J., Schmeichel, E.: Star arboricity of graphs. Discrete Mathematics 149(1-3), 93–98 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hańćkowiak, M., Karoński, M., Panconesi, A.: A faster distributed algorithm for computing maximal matching deterministically. In: Proceedings of PODC 1999, the Eighteen Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 219–228 (1999)

    Google Scholar 

  11. Jia, L., Rajaraman, R., Suel, R.: An Efficient Distributed Algorithm for Constructing Small Dominating Sets. In: Proc. of the 20th ACM Symposium on Principles of Distributed Computing (PODC), pp. 33–42 (2001)

    Google Scholar 

  12. Kutten, S., Peleg, D.: Fast distributed construction of k-dominating sets and applications. In: Proceedings of the fourteenth annual ACM symposium on Principles of distributed computing, pp. 238–251 (1995)

    Google Scholar 

  13. Kuhn, F., Wattenhofer, R.: Constant-Time Distributed Dominating Set Approximation. In: 22nd ACM Symposium on the Principles of Distributed Computing (PODC), Boston, Massachusetts, USA (July 2003)

    Google Scholar 

  14. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What Cannot Be Computed Locally! In: Proceedings of 23rd ACM Symposium on the Principles of Distributed Computing (PODC), pp. 300–309 (2004)

    Google Scholar 

  15. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czygrinow, A., Hańćkowiak, M., Szymańska, E. (2006). Distributed Approximation Algorithms for Planar Graphs. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds) Algorithms and Complexity. CIAC 2006. Lecture Notes in Computer Science, vol 3998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758471_29

Download citation

  • DOI: https://doi.org/10.1007/11758471_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34375-2

  • Online ISBN: 978-3-540-34378-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics