[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On-Line Coloring of H-Free Bipartite Graphs

  • Conference paper
Algorithms and Complexity (CIAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3998))

Included in the following conference series:

Abstract

We present a new on-line algorithm for coloring bipartite graphs. This yields a new upper bound on the on-line chromatic number of bipartite graphs, improving a bound due to Lovász, Saks and Trotter. The algorithm is on-line competitive on various classes of H – free bipartite graphs, in particular P 6-free bipartite graphs and P 7-free bipartite graphs, i.e., that do not contain an induced path on six, respectively seven vertices. The number of colors used by the on-line algorithm in these particular cases is bounded by roughly twice, respectively roughly eight times the on-line chromatic number. In contrast, it is known that there exists no competitive on-line algorithm to color P 6-free (or P 7-free) bipartite graphs, i.e., for which the number of colors is bounded by any function only depending on the chromatic number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan, London and Elsevier, New York (1976)

    Google Scholar 

  2. Chrobak, M., Ślusarek, M.: Problem 84-23. Journal of Algorithms 5, 588 (1984)

    Google Scholar 

  3. Erlebach, T., Fiala, J.: On-line coloring of geometric intersection graphs. Computational Geometry: Theory and Applications 23, 243–255 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Gyárfás, A., Király, Z., Lehel, J.: On-line competitive coloring algorithms. Technical report TR-9703-1 (1997), Available at: http://www.cs.elte.hu/tr97/

  5. Gyárfás, A., Király, Z., Lehel, J.: On-line 3-chromatic graphs. II. Critical graphs. Discrete Mathematics 177, 99–122 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gyárfás, A., Lehel, J.: On-line and first-fit colorings of graphs. Journal of Graph Theory 12, 217–227 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gyárfás, A., Lehel, J.: First fit and on-line chromatic number of families of graphs. Ars Combinatorica 29C, 168–176 (1990)

    Google Scholar 

  8. Gyárfás, A., Lehel, J.: Effective on-line coloring of P 5-free graphs. Combinatorica 11, 181–184 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Halldórsson, M.M.: Online coloring known graphs. Electronic Journal of Combinatorics 7, Research Paper 7, 9pp (2000)

    Google Scholar 

  10. Kierstead, H.A.: The linearity of first-fit coloring of interval graphs. SIAM Journal on Discrete Mathematics 1, 526–530 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kierstead, H.A.: Coloring graphs on-line. In: Fiat, Woeginger (eds.) Online Algorithms: the state of the art. LNCS, vol. 1442, pp. 281–305. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Kierstead, H., Penrice, S.G.: Radius two trees specify χ-bounded classes. Journal of Graph Theory 18, 119–129 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kierstead, H., Penrice, S.G., Trotter, W.: On-line graph coloring and recursive graph theory. SIAM Journal on Discrete Mathematics 7, 72–89 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kolossa, K.: On the on-line chromatic number of the family of on-line 3-chromatic graphs. Discrete Mathematics 150, 205–230 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lovász, L., Saks, M., Trotter, W.T.: An on-line graph coloring algorithm with sublinear performance ratio. Discrete Mathematics 75, 319–325 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs – a survey. Graphs and Combinatorics 20, 1–40 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Broersma, H.J., Capponi, A., Paulusma, D. (2006). On-Line Coloring of H-Free Bipartite Graphs. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds) Algorithms and Complexity. CIAC 2006. Lecture Notes in Computer Science, vol 3998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758471_28

Download citation

  • DOI: https://doi.org/10.1007/11758471_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34375-2

  • Online ISBN: 978-3-540-34378-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics