Abstract
Let Δ≥ 1 and δ≥ 0 be real numbers. A tree T=(V,E′) is a distance (Δ,δ )–approximating tree of a graph G=(V,E) if d H (u,v) ≤ Δ d G (u,v) + δ and d G (u,v) ≤ Δ d H (u,v) + δ hold for every u,v∈ V. The distance (Δ,δ )-approximating tree problem asks for a given graph G to decide whether G has a distance (Δ,δ)-approximating tree. In this paper, we consider unweighted graphs and show that the distance (Δ,0)-approximating tree problem is NP-complete for any Δ≥ 5 and the distance (1,1)-approximating tree problem is polynomial time solvable.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bartal, Y.: Probabalistic approximation of metric spaces and its algorithmic applications. In: FOCS 1996, pp. 184–193 (1996)
Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog(n)competitive algorithm for metrical task systems. In: STOC 1997, pp. 711–719 (1997)
Barthélemy, J.-P., Guénoche, A.: Trees and Proximity Representations. Wiley, New York (1991)
Brandstädt, A., Chepoi, V., Dragan, F.F.: Distance Approximating Trees for Chordal and Dually Chordal Graphs. Journal of Algorithms 30, 166–184 (1999)
Brandstädt, A., Dragan, F., Le, H.-O., Le, V.B.: Tree Spanners on Chordal Graphs: Complexity and Algorithms. Theor. Comput. Science 310, 329–354 (2004)
Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Disc. Math. 8, 359–387 (1995)
Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a Finite Metric by a Small Number of Tree Metrics. In: FOCS 1998, pp. 379–388 (1998)
Chepoi, V., Dragan, F.F.: A note on distance approximating trees in graphs. European Journal of Combinatorics 21, 761–766 (2000)
Chew, L.P.: There are planar graphs almost as good as the complete graph. J. of Computer and System Sciences 39, 205–219 (1989)
Emek, Y., Peleg, D.: Approximating Minimum Max-Stretch Spanning Trees on Unweighted Graphs. In: SODA 2004, pp. 261–270 (2004)
Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: STOC 2003, pp. 448–455 (2003)
Feige, U.: Approximating the Bandwidth via Volume Respecting Embeddings. J. Comput. System Sci. 60, 510–539 (2000)
Gupta, A.: Improved bandwidth approximation for trees and chordal graphs. Journal of Algorithms 40, 24–36 (2001)
Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2, 135–158 (1973)
Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems, I: the p-centers. SIAM J. Appl. Math. 37, 513–538 (1979)
Kratsch, D., Le, H.-O., Müller, H., Prisner, E., Wagner, D.: Additive tree spanners. SIAM J. Discrete Math. 17, 332–340 (2003)
Krauthgamer, R., Lee, J.R.: The intrinsic dimensionality of graphs. In: STOC 2003, pp. 438–447 (2003)
Krauthgamer, R., Linial, N., Magen, A.: Metric Embedding – Beyond one-dimensional distortion. Discrete and Computational Geometry 31, 339–356 (2004)
Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)
Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some its algorithmic applications. Combinatorica 15, 215–245 (1995)
McKee, T.A.: Personal communication to E. Prisner (1995)
Miller, G.L., Ramachandran, V.: A new graph triconnectivity algorithm and its parallelization. Combinatorica 12, 53–76 (1992)
Peleg, D., Schäffer, A.A.: Graph Spanners. J. Graph Theory 13, 99–116 (1989)
Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. In: PODC 1987, pp. 77–85 (1987)
Prisner, E.: Distance approximating spanning trees. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 499–510. Springer, Heidelberg (1997)
Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. W.H. Freeman, San Francisco (1973)
Swofford, D.L., Olsen, G.J.: Phylogeny reconstruction. In: Hillis, D.M., Moritz, C. (eds.) Molecular Systematics, pp. 411–501. Sinauer Associates Inc., Sunderland (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dragan, F.F., Yan, C. (2006). Distance Approximating Trees: Complexity and Algorithms. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds) Algorithms and Complexity. CIAC 2006. Lecture Notes in Computer Science, vol 3998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758471_26
Download citation
DOI: https://doi.org/10.1007/11758471_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34375-2
Online ISBN: 978-3-540-34378-3
eBook Packages: Computer ScienceComputer Science (R0)