[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Inapproximability Results for Orthogonal Rectangle Packing Problems with Rotations

  • Conference paper
Algorithms and Complexity (CIAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3998))

Included in the following conference series:

  • 638 Accesses

Abstract

Recently Bansal and Sviridenko [4] proved that there is no asymptotic PTAS for 2-dimensional Orthogonal Rectangle Bin Packing without rotations allowed, unless \(\text{\rm P}=\textrm{\rm NP}\). We show that similar approximation hardness results hold for several rectangle packing problems even if rotations by ninety degrees around the axes are allowed. Moreover, for some of these problems we provide explicit lower bounds on asymptotic approximation ratio of any polynomial time approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and approximation. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  2. Baker, B.S., Calderbank, A.R., Coffman, E.G., Lagarias, J.C.: Approximation algorithms for maximizing the number of squares packed into a rectangle. SIAM J. on Algebraic and Discrete Methods 4, 383–397 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimensions: inapproximability results and approximation schemes (February 2004) (manuscript)

    Google Scholar 

  4. Bansal, N., Sviridenko, M.: New approximability and inapproximability results for 2-dimensional bin packing. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 189–196 (2004)

    Google Scholar 

  5. Caprara, A.: Packing 2-dimensional bins in harmony. In: Proceedings of the 43th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 490–499 (2002)

    Google Scholar 

  6. Chekuri, C., Khanna, S.: On multi-dimensional packing problems. In: Proc. of the 10th ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 185–194 (1999)

    Google Scholar 

  7. Chlebík, M., Chlebíková, J.: Complexity of approximating bounded variants of optimization problems. Theoretical Computer Science 354, 320–338 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Correa, J.R., Kenyon, C.: Approximation schemes for multidimensional packing. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 179–188 (2004)

    Google Scholar 

  9. Csirik, J., van Vliet, A.: An on-line algorithm for multidimensional bin packing. Operation Research Letters 13, 149–158 (1993)

    Article  MATH  Google Scholar 

  10. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within (1 + ε) in linear time. Combinatorica 1, 349–355 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jansen, K., Solis-Oba, R.: An asymptotic approximation algorithm for 3d-strip packing. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2006)

    Google Scholar 

  12. Jansen, K., Stee, R.: On strip packing with rotations. In: Proceedings of the 37th ACM Symposium on Theory of Computing, STOC, pp. 755–761 (2005)

    Google Scholar 

  13. Jansen, K., Zhang, G.: On rectangle packing: maximizing benefits. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 197–206 (2004)

    Google Scholar 

  14. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP complete. Information Processing Letters 37, 27–35 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science, FOCS, pp. 312–320 (1982)

    Google Scholar 

  16. Kenyon, C., Rémila, E.: A near optimal solution to a two-dimensional cutting stock problem. Mathematics of Operations Research 25, 645–656 (2000); Preliminary version in Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 31–36 (1996)

    Google Scholar 

  17. Li, K., Cheng, K.H.: On three-dimensional packing. SIAM J. Comput. 19, 847–867 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Miyazawa, F.K., Wakabayashi, Y.: Approximation algorithms for the orthogonal z-oriented three-dimensional packing problems. SIAM J. Comput. 29, 1008–1029 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Miyazawa, F.K., Wakabayashi, Y.: Packing problems with orthogonal rotations. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 359–368. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Petrank, E.: The hardness of approximation: Gap location. Computational Complexity 4, 133–157 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Woeginger, G.J.: There is no asymptotic PTAS for two-dimensional vector packing. Information Processing Letters 64(6), 293–297 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chlebík, M., Chlebíková, J. (2006). Inapproximability Results for Orthogonal Rectangle Packing Problems with Rotations. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds) Algorithms and Complexity. CIAC 2006. Lecture Notes in Computer Science, vol 3998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758471_21

Download citation

  • DOI: https://doi.org/10.1007/11758471_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34375-2

  • Online ISBN: 978-3-540-34378-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics