Abstract
In this paper, we proposed an enhanced fuzzy single layer learning algorithm using the dynamic adjustment of threshold. For performance evaluation, the proposed method was applied to the XOR problem, which is used as a benchmark in the field of pattern recognition, and the recognition of digital image in a practical image processing application. As a result of experiment, though the method does not always guarantee the convergence, it shows the improved learning time and the high convergence rate.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Judith, E.D.: Neural Network Architectures An Introduction. Van Nostrand Reinhold, New York (1990)
Gupta, M.M., Qi, J.: On Fuzzy Neuron Models. Proceedings of IJCNN 2, 431–435 (1991)
Goh, T.H., Wang, P.Z., Lui, H.C.: Learning Algorithm for Enhanced Fuzzy Perceptron. Proceedings of IJCNN 2, 435–440 (1992)
Kim, K.B., Cha, E.Y.: A New Single Layer Perceptron using Fuzzy Neural Controller. In: Jaime, O., Ariel, S. (eds.) Simulators International XII, vol. 27(3), pp. 341–343 (1995)
Kim, K.B., Kim, S., Joo, Y., Oh, A.S.: Enhanced Fuzzy Single Layer Perceptron. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 603–608. Springer, Heidelberg (2005)
Kim, K.B., Seo, C.J., Yang, H.K.: A Biological Fuzzy Multilayer Perceptron Algorithm. Journal of KIMICS 1(1), 99–103 (2003)
Kim, T.K., Yun, H.G., Lho, Y.W., Kim, K.B.: An Educational Matters Administration System on the Web by Using Image Recognition. In: Proceedings of Korea Intelligent Information Systems, pp. 203–209 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, KB., Lee, BK., Kim, SH. (2006). Enhanced Fuzzy Single Layer Learning Algorithm Using Automatic Tuning of Threshold. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751595_19
Download citation
DOI: https://doi.org/10.1007/11751595_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34075-1
Online ISBN: 978-3-540-34076-8
eBook Packages: Computer ScienceComputer Science (R0)