[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Delaunay-Based Polygon Morphing Across a Change in Topology

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3980))

Included in the following conference series:

  • 1254 Accesses

Abstract

We present a new object-based algorithm for morphing between two shapes with an arbitrary number of polygons and arbitrarily different topology. Many solutions have been proposed for morphing between two polygons. However, there has been little attention to morphing between different numbers of polygons, across a change in topology. A modified conforming Delaunay triangulation is used to build the vertex correspondence. Polygon evolution is used to smooth the morph. The morph requires no user interaction, avoids self-intersection, uses dynamic vertex correspondence, and follows nonlinear vertex paths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexa, M., Cohen-Or, D., Koltun, V. (2001) Object-space morphing. Tutorial notes, Shape Modeling International (2001)

    Google Scholar 

  2. Bruckstein, A., Sapiro, G., Shaked, D.: Evolutions of planar polygons. International Journal of Pattern Recognition and Artificial Intelligence 9(6), 991–1014 (1995)

    Article  Google Scholar 

  3. Chew, L.P.: Constrained Delaunay triangulations. In: Proceedings of the third annual symposium on Computational geometry, June 08-10, pp. 215–222 (1987)

    Google Scholar 

  4. Cohen-Or, D., Levin, D., Solomovici, A.: Three-dimensional distance field metamorphosis. ACM Transactions on Graphics 17(2), 116–141 (1998)

    Article  Google Scholar 

  5. DeCarlo, D., Gallier, J.: Topological Evolution of Surfaces. Graphics Interface 1996, 194–203 (1996)

    Google Scholar 

  6. Gage, M., Hamilton, R.: The heat equation shrinking convex plane curves. J. Differential Geometry 23, 69–96 (1986)

    MATH  MathSciNet  Google Scholar 

  7. Gomes, J., Darsa, L., Costa, B., Velho, L.: Warping and morphing of graphical objects. Morgan Kaufmann Publishers, Inc., San Francisco (1998)

    Google Scholar 

  8. Goldstein, E., Gotsman, C.: Polygon morphing using a multiresolution representation. Graphics Interface 1995, 247–254 (1995)

    Google Scholar 

  9. Grayson, M.: The heat equation shrinks embedded plane curves to round points. J. Differential Geometry 26, 285–314 (1987)

    MATH  MathSciNet  Google Scholar 

  10. Guibas, L.J., Knuth, D., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7, 381–413 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer, New York (1988)

    Google Scholar 

  12. Sederberg, T., Greenwood, E.: A physically based approach to 2-D shape blending. In: SIGGRAPH 1992, pp. 25–34 (1992)

    Google Scholar 

  13. Shapira, M., Rappoport, A.: Shape blending using the star-skeleton representation. IEEE Computer Graphics and Applications, 44–50 (March 1995)

    Google Scholar 

  14. Shewchuk, J.R.: Delaunay Refinement Algorithms for Triangular Mesh Generation. Computational Geometry: Theory and Applications 22, 21–74 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Turk, G., O’Brien, J.: Shape transformation using variational implicit functions. In: SIGGRAPH 1999, pp. 335–342 (1999)

    Google Scholar 

  16. Wu, X.: Morphing many polygons across a change in topology. Ph.D. Thesis, Department of Computer and Information Sciences, University of Alabama at Birmingham (2003)

    Google Scholar 

  17. Wu, X., Johnstone, J.: A Visibility-Based Polygonal Decomposition (Manuscript under preparation) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, X., Johnstone, J.K. (2006). Delaunay-Based Polygon Morphing Across a Change in Topology. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751540_53

Download citation

  • DOI: https://doi.org/10.1007/11751540_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34070-6

  • Online ISBN: 978-3-540-34071-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics