[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast Intersections for Subdivision Surfaces

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3980))

Included in the following conference series:

  • 1281 Accesses

Abstract

Subdivision surface intersections can be costly to compute. They require the intersection of high resolution meshes in order to obtain accurate results, which can lead to slow performance and high memory usage. In this paper we show how the strong convex hull property can lead to a method for efficiently computing intersections at high resolutions. Consequently, the method can be used with any subdivision scheme that has the strong convex hull property. In this method, a bipartite graph structure is used to track potentially intersecting faces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ALIAS|WAVEFRONT: Maya (2002), http://www.aliaswavefront.com

  2. Biermann, H., Kristjansson, D., Zorin, D.: Approximate Boolean operations on free-form solids. In: Proceedings of SIGGRAPH, pp. 185–194 (2001)

    Google Scholar 

  3. DeRose, T., Kass, M., Truong, T.: Subdivision surfaces in character animation. In: Proceedings of SIGGRAPH, pp. 85–94 (1998)

    Google Scholar 

  4. Epstein, D., Gharachorloo, N., Jansen, F., Rossignac, J., Zoulos, C.: Multiple depth-buffer rendering of csg. Technical report, IBM Research Report (1989)

    Google Scholar 

  5. Goldfeather, J., Hultquist, J.P.M., Fuchs, H.: Fast constructive solid geometry in the pixel-powers graphics system. In: Proceedings of SIGGRAPH, pp. 107–116 (1986)

    Google Scholar 

  6. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interference detection. Computer Aided Geometric Design 3(4), 295–311 (1986)

    Article  MathSciNet  Google Scholar 

  7. Grinspun, E., Schröder, P.: Normal bounds for subdivision-surface interference detection. In: Proceedings of the conference on Visualization, pp. 333–340 (2001)

    Google Scholar 

  8. Hohmeyer, M.E.: Robust and efficient intersection for solid modeling. PhD thesis, UC Berkeley (1992)

    Google Scholar 

  9. Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., Stuetzle, W.: Piecewise smooth surface reconstruction. In: Proceedings of SIGGRAPH, pp. 295–302 (1994)

    Google Scholar 

  10. Keyser, J., Krishnan, S., Manocha, D.: Efficient and accurate b-rep generation of low degree sculptured solids using exact arithmetic: I-representations. Computer Aided Geometric Design 16(9), 841–859 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Keyser, J., Krishnan, S., Manocha, D.: Efficient and accurate b-rep generation of low degree sculptured solids using exact arithmetic: II-computation. Computer Aided Geometric Design 16(9), 861–882 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Krishnan, S., Manocha, D.: An efficient surface intersection algorithm based on lower-dimensional formulation. ACM Transactions on Graphics 16(1), 74–106 (1997)

    Article  Google Scholar 

  13. Lanquetin, S., Foufou, S., Kheddouci, H., Neveu, M.: A graph based algorithm for intersection of subdivision surfaces. In: ICCSA 2003, vol. 3, pp. 387–396 (2003)

    Google Scholar 

  14. Lin, M., Gottschalk, S.: Collision detection between geometric models: A survey. In: Proceedings of IMA Conference on Mathematics of Surfaces (1998)

    Google Scholar 

  15. Litke, N., Levin, A., Schröder, P.: Trimming for subdivision surfaces. Computer Aided Geometric Design 18(5), 429–454 (2001)

    Article  MathSciNet  Google Scholar 

  16. MPEG 4 Committee: MPEG 4 Standard (2002)

    Google Scholar 

  17. Rabbitz, R.: Fast Collision Detection of Moving Convex Polyhedra. Graphics Gems IV, 83–109 (1994)

    Google Scholar 

  18. Rappoport, A., Spitz, S.: Interactive Boolean operations for conceptual design of 3-d solids. In: Proceedings of SIGGRAPH, pp. 269–278 (1997)

    Google Scholar 

  19. Schröder, P.: Subdivision as a fundamental building block of digital geometry processing algorithms. Journal of Computational and Applied Mathematics 149(1), 207–219 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schweitzer, J.E.: Analysis and application of subdivision surfaces. PhD Thesis, University of Washington (1996)

    Google Scholar 

  21. Wu, X., Peters, J.: Interference detection for subdivision surfaces. Computer Graphics Forum 23(3), 577–584 (2004)

    Article  Google Scholar 

  22. Zachmann, G.: Minimal hierarchical collision detection. In: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 121–128 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Severn, A., Samavati, F. (2006). Fast Intersections for Subdivision Surfaces. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751540_11

Download citation

  • DOI: https://doi.org/10.1007/11751540_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34070-6

  • Online ISBN: 978-3-540-34071-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics