[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Framework for Extended Algebraic Data Types

  • Conference paper
Functional and Logic Programming (FLOPS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3945))

Included in the following conference series:

Abstract

There are a number of extended forms of algebraic data types such as type classes with existential types and generalized algebraic data types. Such extensions are highly useful but their interaction has not been studied formally so far. Here, we present a unifying framework for these extensions. We show that the combination of type classes and generalized algebraic data types allows us to express a number of interesting properties which are desired by programmers. We support type checking based on a novel constraint solver. Our results show that our system is practical and greatly extends the expressive power of languages such as Haskell and ML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdennadher, S.: Operational semantics and confluence of constraint propagation rules. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 252–266. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  • Barras, B., Boutin, S., Cornes, C., Courant, J., Filliâtre, J.-C., Herbelin, H., Huet, G., Manoury, P., Muñoz, C., Murthy, C., Parent, C., Paulin- Mohring, C., Saïbi, A., Werner, B.: The Coq Proof Assistant Reference Manual Version 6.1. INRIA-Rocquencourt-CNRS-ENS Lyon (December 1996)

    Google Scholar 

  • Cheney, J., Hinze, R.: First-class phantom types. Technical Report CUCIS TR2003-1901, Cornell University (2003)

    Google Scholar 

  • Chakravarty, M., Keller, G., Peyton Jones, S.: Associated types synonyms. In: Proc. of ICFP 2005, pp. 241–253. ACM Press, New York (2005)

    Google Scholar 

  • Chen, C., Xi, H.: Combining programming with theorem proving. In: Proc. of ICFP 2005, pp. 66–77. ACM Press, New York (2005)

    Google Scholar 

  • Duck, G.J., Peyton-Jones, S., Stuckey, P.J., Sulzmann, M.: Sound and decidable type inference for functional dependencies. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 49–63. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  • Frühwirth, T.: Constraint handling rules. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, Springer, Heidelberg (1995)

    Google Scholar 

  • Glasgow haskell compiler home page, http://www.haskell.org/ghc/

  • Jones, S.J., Jones, M.P., Meijer, E.: Type classes: an exploration of the design space. In: Haskell Workshop (June 1997)

    Google Scholar 

  • Jones, M.P.: Qualified Types: Theory and Practice. D. Phil. thesis, Oxford University, Oxford (1992)

    Google Scholar 

  • Jones, M.P.: Simplifying and improving qualified types. In: FPCA 1995: Conference on Functional Programming Languages and Computer Architecture. ACM Press, New York (1995)

    Google Scholar 

  • Jones, M.P.: Type classes with functional dependencies. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, p. 230. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Läufer, K.: Type classes with existential types. Journal of Functional Programming 6(3), 485–517 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Lassez, J., Maher, M., Marriott, K.: Unification revisited. In: Foundations of Deductive Databases and Logic Programming. Morgan Kauffman, San Francisco (1987)

    Google Scholar 

  • Läufer, K., Odersky, M.: Polymorphic type inference and abstract data types. ACM Trans. Program. Lang. Syst. 16(5), 1411–1430 (1994)

    Article  Google Scholar 

  • Garrett Morris, J.: GADT question (2005), http://www.haskell.org/pipermail/glasgow-haskell-users/2005-October/009076.html

  • Nilsson, H.: Dynamic optimization for functional reactive programming using generalized algebraic data types. In: Proc. of ICFP 2005, pp. 54–65. ACM Press, New York (2005)

    Google Scholar 

  • Odersky, M., Sulzmann, M., Wehr, M.: Type inference with constrained types. Theory and Practice of Object Systems 5(1), 35–55 (1999)

    Article  Google Scholar 

  • Jones, S.P., Vytiniotis, D., Washburn, G., Weirich, S.: Simple unification-based type inference for GADTs (2005), Submitted to PLDI 2006

    Google Scholar 

  • Jones, S.P. (ed.): Haskell 1998 Language and Libraries: The Revised Report. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  • Pottier, F., Gauthier, N.: Polymorphic typed defunctionalization. In: Proc. of POPL 2004, pp. 89–98. ACM Press, New York (2004)

    Google Scholar 

  • Pottier, F., Régis-Gianas, Y.: Stratified type inference for generalized algebraic data types. In: Proc. of POPL 2006, pp. 232–244. ACM Press, New York (2006)

    Google Scholar 

  • Pfenning, F., Schürmann, C.: System description: Twelf - a metalogical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  • Sheard, T.: Putting curry-howard to work. In: Proc. of Haskell 2005, pp. 74–85. ACM Press, New York (2005)

    Google Scholar 

  • Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, Reading (1967)

    MATH  Google Scholar 

  • Sheard, T., Pasalic, E.: Meta-programming with built-in type equality. In: Fourth International Workshop on Logical Frameworks and Meta-Languages (2004)

    Google Scholar 

  • Simonet, V., Pottier, F.: Constraint-based type inference for guarded algebraic data types. Research Report 5462, INRIA (January 2005)

    Google Scholar 

  • Stuckey, P.J., Sulzmann, M.: A theory of overloading. ACM Transactions on Programming Languages and Systems (2005) (to appear)

    Google Scholar 

  • Sulzmann, M.: A General Framework for Hindley/Milner Type Systems with Constraints. PhD thesis, Yale University, Department of Computer Science (May 2000)

    Google Scholar 

  • Sulzmann, M., Wazny, J.: Chameleon, http://www.comp.nus.edu.sg/~sulzmann/chameleon

  • Sulzmann, M., Wazny, J.: Lexically scoped type annotations (2005), http://www.comp.nus.edu.sg/~sulzmann

  • Sulzmann, M., Wazny, J., Stuckey, P.J.: Co-induction and type improvement in type class proofs (2005), http://www.comp.nus.edu.sg/~sulzmann

  • Sulzmann, M., Wazny, J., Stuckey, P.J.: A framework for extended algebraic data types. Technical report, The National University of Singapore (2006)

    Google Scholar 

  • Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: Proc. of POPL 1989, pp. 60–76. ACM Press, New York (1989)

    Google Scholar 

  • Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: Proc. of POPL 2003, pp. 224–235. ACM Press, New York (2003)

    Google Scholar 

  • Zenger, C.: Indizierte Typen. PhD thesis, Universität Karlsruhe (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sulzmann, M., Wazny, J., Stuckey, P.J. (2006). A Framework for Extended Algebraic Data Types. In: Hagiya, M., Wadler, P. (eds) Functional and Logic Programming. FLOPS 2006. Lecture Notes in Computer Science, vol 3945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11737414_5

Download citation

  • DOI: https://doi.org/10.1007/11737414_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33438-5

  • Online ISBN: 978-3-540-33439-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics