Abstract
We propose a new linear multiplier which is comparable to linear polynomial basis multipliers in terms of the area and time complexity. Also we give a very detailed comparison of our multiplier with the normal and polynomial basis multipliers for the five binary fields GF(2m), m=163,233,283,409,571, recommended by NIST for elliptic curve digital signature algorithm.
This work was supported by grant No. R01-2005-000-11261-0 from Korea Science and Engineering Foundation in Ministry of Science & Technology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Massy, J.L., Omura, J.K.: Computational method and apparatus for finite field arithmetic, US Patent No. 4587627 (1986)
Agnew, G.B., Mullin, R.C., Onyszchuk, I., Vanstone, S.A.: An implementation for a fast public key cryptosystem. J. Cryptology 3, 63–79 (1991)
Wu, H., Hasan, M.A., Blake, I.F.: New low complexity bit-parallel finite field multipliers using weakly dual bases. IEEE Trans. Computers 47, 1223–1234 (1998)
Reyhani-Masoleh, A., Hasan, M.A.: Low complexity sequential normal basis multipliers over GF(2m). In: 16th IEEE Symposium on Computer Arithmetic, vol.16, pp. 188–195 (2003)
Kwon, S., Gaj, K., Kim, C., Hong, C.: Efficient linear array for multiplication in GF(2m) using a normal basis for elliptic curve cryptography. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 76–91. Springer, Heidelberg (2004)
Menezes, A.J., Blake, I.F., Gao, S., Mullin, R.C., Vanstone, S.A., Yaghoobian, T.: Applications of Finite Fields. Kluwer Academic Publishers, Dordrecht (1993)
Berlekamp, E.R.: Bit-serial Reed-Solomon encoders. IEEE Trans. Inform. Theory 28, 869–874 (1982)
Wang, M., Blake, I.F.: Bit serial multiplication in finite fields. SIAM J. Disc. Math. 3, 140–148 (1990)
Morii, M., Kasahara, M., Whiting, D.L.: Efficient bit-serial multiplication and the discrete-time Wiener-Hopf equation over finite fields. IEEE Trans. Inform. Theory 35, 1177–1183 (1989)
Fenn, S.T.J., Benaissa, M., Taylor, D.: GF(2m) multiplication and division over the dual basis. IEEE Trans. Computers 45, 319–327 (1996)
Stinson, D.R.: On bit-serial multiplication and dual bases in GF(2m). IEEE Trans. Inform. Theory 37, 1733–1736 (1991)
NIST, Digital Signature Standard. FIPS Publication, 186-2 (February 2000)
Wu, H., Hasan, M.A., Blake, I.F., Gao, S.: Finite field multiplier using redundant representation. IEEE Trans. Computers 51, 1306–1316 (2002)
Feisel, S., von zur Gathen, J., Shokrollahi, M.: Normal bases via general Gauss periods. Math. Comp. 68, 271–290 (1999)
Sunar, B., Koç, Ç.K.: An efficient optimal normal basis type II multiplier. IEEE Trans. Computers 50, 83–87 (2001)
Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handboook of Applied Cryptography. CRC Press, Boca Raton (1996)
Zivkovic, M.: Table of primitive binary polynomials II. Math. Comp. 63, 301–306 (1994)
Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)
Hankerson, D., Hernandez, J.L., Menezes, A.J.: Software implementation of elliptic curve cryptography over binary fields. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000)
Song, L., Parhi, K.K.: Efficient finite field serial/parallel multiplication. In: International Conference on Application Specific Systems, Architectures and Processors, pp. 19–21 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kwon, S., Kwon, T., Park, YH. (2006). New Architecture for Multiplication in GF(2m) and Comparisons with Normal and Polynomial Basis Multipliers for Elliptic Curve Cryptography. In: Won, D.H., Kim, S. (eds) Information Security and Cryptology - ICISC 2005. ICISC 2005. Lecture Notes in Computer Science, vol 3935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11734727_27
Download citation
DOI: https://doi.org/10.1007/11734727_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33354-8
Online ISBN: 978-3-540-33355-5
eBook Packages: Computer ScienceComputer Science (R0)