[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mining Spatio-temporal Association Rules, Sources, Sinks, Stationary Regions and Thoroughfares in Object Mobility Databases

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3882))

Included in the following conference series:

  • 1326 Accesses

Abstract

As mobile devices proliferate and networks become more location-aware, the corresponding growth in spatio-temporal data will demand analysis techniques to mine patterns that take into account the semantics of such data. Association Rule Mining has been one of the more extensively studied data mining techniques, but it considers discrete transactional data (supermarket or sequential). Most attempts to apply this technique to spatial-temporal domains maps the data to transactions, thus losing the spatio-temporal characteristics. We provide a comprehensive definition of spatio-temporal association rules (STARs) that describe how objects move between regions over time. We define support in the spatio-temporal domain to effectively deal with the semantics of such data. We also introduce other patterns that are useful for mobility data; stationary regions and high traffic regions. The latter consists of sources, sinks and thoroughfares. These patterns describe important temporal characteristics of regions and we show that they can be considered as special STARs. We provide efficient algorithms to find these patterns by exploiting several pruning properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns:a summary of results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Huang, Y., Xiong, H., Shekhar, S., Pei, J.: Mining confident co-location rules without a support threshold. In: Proceedings of the 18th ACM Symposium on Applied Computing ACM SAC (2003)

    Google Scholar 

  3. Ale, J.M., Rossi, G.H.: An approach to discovering temporal association rules. In: SAC 2000: Proceedings of the 2000 ACM symposium on Applied computing, pp. 294–300. ACM Press, New York (2000)

    Google Scholar 

  4. Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering calendar-based temporal association rules. Data Knowl. Eng. 44, 193–218 (2003)

    Article  Google Scholar 

  5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases VLDB, pp. 487–499. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  6. Mennis, J., Liu, J.: Mining association rules in spatio-temporal data. In: Proceedings of the 7th International Conference on GeoComputation (2003)

    Google Scholar 

  7. Tao, Y., Kollios, G., Considine, J., Li, F., Papadias, D.: Spatio-temporal aggregation using sketches. In: 20th International Conference on Data Engineering, pp. 214–225. IEEE, Los Alamitos (2004)

    Google Scholar 

  8. Flajolet, P., Martin, G.: Probabilistic counting algorithms for data base applications. Journal of Computer Systems Science 31, 182–209 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tsoukatos, I., Gunopulos, D.: Efficient mining of spatiotemporal patterns. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 425–442. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Wang, J., Hsu, W., Lee, M.L., Wang, J.T.L.: Flowminer: Finding flow patterns in spatio-temporal databases. In: ICTAI, pp. 14–21 (2004)

    Google Scholar 

  11. Ishikawa, Y., Tsukamoto, Y., Kitagawa, H.: Extracting mobility statistics from indexed spatio-temporal datasets. In: STDBM, pp. 9–16 (2004)

    Google Scholar 

  12. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.: Mining, indexing, and querying historical spatiotemporal data. In: KDD 2004: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 236–245. ACM Press, New York (2004)

    Chapter  Google Scholar 

  13. Verhein, F., Chawla, S.: Mining spatio-temporal association rules, sources, sinks, stationary regions and thoroughfares in object mobility databases (technical report 574). Technical report, School of IT, University of Sydney, NSW, Australia (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verhein, F., Chawla, S. (2006). Mining Spatio-temporal Association Rules, Sources, Sinks, Stationary Regions and Thoroughfares in Object Mobility Databases. In: Li Lee, M., Tan, KL., Wuwongse, V. (eds) Database Systems for Advanced Applications. DASFAA 2006. Lecture Notes in Computer Science, vol 3882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11733836_15

Download citation

  • DOI: https://doi.org/10.1007/11733836_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33337-1

  • Online ISBN: 978-3-540-33338-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics