[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Important Connection Between Network Motifs and Parsimony Models

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3909))

Abstract

We demonstrate an important connection between network motifs in certain biological networks and validity of evolutionary trees constructed using parsimony methods. Parsimony methods assume that taxa are described by a set of characters and infer phylogenetic trees by minimizing number of character changes required to explain observed character states. From the perspective of applicability of parsimony methods, it is important to assess whether the characters used to infer phylogeny are likely to provide a correct tree. We introduce a graph theoretical characterization that helps to select correct characters. Given a set of characters and a set of taxa, we construct a network called character overlap graph. We show that the character overlap graph for characters that are appropriate to use in parsimony methods is characterized by significant under-representation of subnetworks known as holes, and provide a mathematical validation for this observation. This characterization explains success in constructing evolutionary trees using parsimony method for some characters (e.g. protein domains) and lack of such success for other characters (e.g. introns). In the latter case, the understanding of mathematical obstacles to applying parsimony methods in a direct way has lead us to a new approach for dealing with inconsistent and/or noisy data. Namely, we introduce the concept of persistent characters which is similar but less restrictive than the well known concept of pairwise compatible characters. Application of this approach to introns produces the evolutionary tree consistent with the Coelomata hypothesis. In contrast, the direct application of a parsimony method, using introns as characters, produces a tree which is inconsistent with any of the two competing evolutionary hypotheses. Similarly, replacing persistence with pairwise compatibility does not lead to a correct tree. This indicates that the concept of persistence provides an important addition to the parsimony metohds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B., de Rosa, R.: Special Feature: The new animal phylogeny: Reliability and implications. PNAS 97(9), 4453–4456 (2000)

    Article  Google Scholar 

  2. Aguinaldo, A.M., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A., Lake, J.A.: Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997)

    Article  Google Scholar 

  3. Apic, G., Huber, W., Teichmann, S.A.: Multi-domain protein families and domain pairs: Comparison with known structures and a random model of domain recombination. J. Struc. Func. Genomics 4, 67–78 (2003)

    Article  Google Scholar 

  4. Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Blair, J., Ikeo, K., Gojobori, T., Blair Hedges, S.: The evolutionary position of nematodes. BMC Evolutionary Biology 2(1), 7 (2002)

    Article  Google Scholar 

  6. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003)

    Article  Google Scholar 

  7. Buneman, P.: A characterisation of rigid circuit graphs. Discrete Math. 9, 205–212 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  8. Camin, J.H., Sokal, R.R.: A method for deducting branching sequences in phylogeny. Evolution 19, 311–326 (1965)

    Article  Google Scholar 

  9. Day, W.H.E., Johnson, D., Sankoff, D.: The computational complexity of inferring rooted phylogenies by parsimony. Mathematical Biosciences 81, 33–42 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deeds, E.J., Hennessey, H., Shakhnovich, E.I.: Prokaryotic phylogenies inferred from protein structural domains. Genome Res. 15(3), 393–402 (2005)

    Article  Google Scholar 

  11. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates (2004)

    Google Scholar 

  12. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory (B) 16, 47–56 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Geer, L.Y., Domrachev, M., Lipman, D.J., Bryant, S.H.: CDART: protein homology by domain architecture. Genome Res. 12(10), 1619–1623 (2002)

    Article  Google Scholar 

  14. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  15. Farris, J.S.: Phylogenetic analysis under Dollo’s law. Systematic Zoology 26(1), 77–88 (1977)

    Article  MathSciNet  Google Scholar 

  16. Letunic, I., Goodstadt, L., Dickens, N.J., Doerks, T., Schultz, J., Mott, R., Ciccarelli, F., Copley, R.R., Ponting, C.P., Bork, P.P.: Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 31(1), 242–244 (2002)

    Article  Google Scholar 

  17. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP- complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  18. McKee, T.A., McMorris, F.R.: Topics in intersection graph theory. SIAM Monographs on Discrete Mathematics and Applications (1999)

    Google Scholar 

  19. McMorris, F.R., Warnow, T., Wimer, T.: Triangulating vertex colored graphs. SIAM J. on Discrete Mathematics 7(2), 296–306 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mehlhorn, K., Naher, S.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  21. Middendorf, M., Ziv, E., Wiggins, C.H.: From The Cover: Inferring network mechanisms: The Drosophila melanogaster protein interaction network. PNAS 102(9), 3192–3197 (2005)

    Article  Google Scholar 

  22. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of Evolved and Designed Networks. Science 303(5663), 1538–1542 (2004)

    Article  Google Scholar 

  23. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs: Simple Building Blocks of Complex Networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  24. Przulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)

    Article  Google Scholar 

  25. Przytycka, T.M., Davis, G., Song, N., Durand, D.: Graph theoretical insight into evolution of multidomain proteins. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 311–325. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Przytycka, T.M., Yu, Y.K.: Scale-free networks versus evolutionary drift. Computational Biology and Chemistry 28, 257–264 (2004)

    Article  MATH  Google Scholar 

  27. Rogozin, I.B., Wolf, I.Y., Sorokin, A.V., Mirkin, B.G., Koonin, E.V.: Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Current Biology 13, 1512–1517 (2003)

    Article  Google Scholar 

  28. Tatusov, R., Fedorova, N., Jackson, J., Jacobs, A., Kiryutin, B., Koonin, E., Krylov, D., Mazumder, R., Mekhedov, S., Nikolskaya, A., Rao, B.S., Smirnov, S., Sverdlov, A., Vasudevan, S., Wolf, Y., Yin, J., Natale, D.: The cog database: an updated version includes eukaryotes. BMC Bioinformatics 4(1), 41 (2003)

    Article  Google Scholar 

  29. Winstanley, H.F., Abeln, S., Deane, C.M.: How old is your fold? Bioinformatics 21(Suppl. 1), i449–458 (2005)

    Google Scholar 

  30. Wolf, Y.I., Rogozin, I.B., Koonin, E.V.: Coelomata and Not Ecdysozoa: Evidence From Genome-Wide Phylogenetic Analysis. Genome Res. 14(1), 29–36 (2004)

    Article  Google Scholar 

  31. Wuchty, S.: Scale-free behavior in protein domain networks. Mol. Biol. Evol. 18, 1694–1702 (2001)

    Google Scholar 

  32. Wuchty, S., Almaas, E.: Evolutionary cores of domain co-occurrence networks. BMC Evolutionary Biology 5(1), 24 (2005)

    Article  Google Scholar 

  33. Yannakakis, M.: Computing the minimum fill-in is NP- complete. SIAM J. Alg and Discrete Math 2, 77–79 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., Alon, U., Margalit, H.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. PNAS 101(16), 5934–5939 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Przytycka, T.M. (2006). An Important Connection Between Network Motifs and Parsimony Models. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_27

Download citation

  • DOI: https://doi.org/10.1007/11732990_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics