[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Detecting MicroRNA Targets by Linking Sequence, MicroRNA and Gene Expression Data

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3909))

Abstract

MicroRNAs (miRNAs) have recently been discovered as an important class of non-coding RNA genes that play a major role in regulating gene expression, providing a means to control the relative amounts of mRNA transcripts and their protein products. Although much work has been done in the genome-wide computational prediction of miRNA genes and their target mRNAs, two open questions are how miRNAs regulate gene expression and how to efficiently detect bona fide miRNA targets from a large number of candidate miRNA targets predicted by existing computational algorithms. In this paper, we present evidence that miRNAs function by post-transcriptional degradation of mRNA target transcripts: based on this, we propose a novel probabilistic model that accounts for gene expression using miRNA expression data and a set of candidate miRNA targets. A set of underlying miRNA targets are learned from the data using our algorithm, GenMiR (Generative model for miRNA regulation). Our model scores and detects 601 out of 1,770 targets obtained from TargetScanS in mouse at a false detection rate of 5%. Our high-confidence miRNA targets include several which have been previously validated by experiment: the remainder potentially represent a dramatic increase in the number of known miRNA targets.

An erratum to this chapter is available at http://dx.doi.org/10.1007/11732990_49.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambros, V.: The functions of animal microRNAs. Nature 431, 350–355 (2004)

    Article  Google Scholar 

  2. Babak, T., Zhang, W., Morris, Q., Blencowe, B.J., Hughes, T.R.: Probing microRNAs with microarrays: Tissue specificity and functional inference. RNA 10, 1813–1819 (2004)

    Article  Google Scholar 

  3. Bagga, S., et al.: Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005)

    Article  Google Scholar 

  4. Bartel, D.P.: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  Google Scholar 

  5. Bentwich, I., et al.: Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics 37, 766–770 (2005)

    Article  Google Scholar 

  6. Berezikov, E., et al.: Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1), 21–24 (2005)

    Article  Google Scholar 

  7. Kent, W.J.: BLAT – The BLAST-Like Alignment Tool. Genome Research 4, 656–664 (2002)

    Google Scholar 

  8. Eddy, S.: Non-coding RNA genes and the modern RNA world. Nature Reviews Genetics 2, 919–929 (2001)

    Article  Google Scholar 

  9. Frey, B.J., et al.: Genome-wide analysis of mouse transcripts using exon-resolution microarrays and factor graphs. Nature Genetics 37, 991–996 (2005)

    Article  Google Scholar 

  10. Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In: Proceedings of the Pacific Symposium on Biocomputing 2001, pp. 422–433. World Scientific, New Jersey (2001)

    Google Scholar 

  11. Huang, J.C., Morris, Q.D., Hughes, T.R., Frey, B.J.: GenXHC: A probabilistic generative model for cross-hybridization compensation in high-density, genome-wide microarray data. In: Proceedings of the Thirteenth Annual Conference on Intelligent Systems for Molecular Biology, June 25-29 (2005)

    Google Scholar 

  12. Hughes, T.R., et al.: Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnol. 19, 342–347 (2001)

    Article  Google Scholar 

  13. John, B., et al.: Human MicroRNA targets. PLoS Biol. 2(11), e363 (2004)

    Google Scholar 

  14. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Learning in Graphical Models. MIT Press, Cambridge (1999)

    Google Scholar 

  15. Kislinger, T., et al.: Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Submitted to Cell (2005)

    Google Scholar 

  16. Krek, A., et al.: Combinatorial microRNA target predictions. Nature Genetics 37, 495–500 (2005)

    Article  Google Scholar 

  17. Lewis, B.P., Burge, C.B., Bartel, D.P.: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)

    Article  Google Scholar 

  18. Lewis, B.P., et al.: Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)

    Article  Google Scholar 

  19. Lim, L.P., et al.: The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008 (2003)

    Article  Google Scholar 

  20. Lim, L.P., et al.: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005)

    Article  Google Scholar 

  21. Lockhart, M., et al.: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996)

    Article  Google Scholar 

  22. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and other variants. Learning in Graphical Models. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  23. Xie, X., et al.: Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature 434, 338–345 (2005)

    Article  Google Scholar 

  24. Zilberstein, C.B.Z., Ziv-Ukelson, M., Pinter, R.Y., Yakhini, Z.: A high-throughput approach for associating microRNAs with their activity conditions. In: Proceedings of the Ninth Annual Conference on Research in Computational Molecular Biology, May 14-18 (2005)

    Google Scholar 

  25. Zhang, W., Morris, Q., et al.: The functional landscape of mouse gene expression. J. Biol. 3, 21–43 (2004)

    Article  Google Scholar 

  26. Supplemental Data for Lewis et al. Cell 120, 15-20, http://web.wi.mit.edu/bartel/pub/Supplemental%20Material/Lewis%20et%20al%202005%20Supp/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, J.C., Morris, Q.D., Frey, B.J. (2006). Detecting MicroRNA Targets by Linking Sequence, MicroRNA and Gene Expression Data. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_11

Download citation

  • DOI: https://doi.org/10.1007/11732990_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics