[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Current Paradigms in Immunology

  • Conference paper
Neural Nets (WIRN 2005, NAIS 2005)

Abstract

The last decade has seen a revolution in the field of Immunology. Starting from simple views on the ability of the immune system to respond to foreign antigens or to perform self/not-self discrimination, the image has become much more complex, with the realisation that autoreactive lymphocytes normally circulate in the body, without causing harm to the organism. In fact, the critical point in the development of an immune response is the activation of lymphocytes. This depends on the functional state of antigen-presenting cells and on structural features of the so-called “immune synapse”. Self/not-self discrimination is therefore not as strict as previously thought: on the contrary, it has been shown that a certain degree of self-reactivity is useful, if not necessary, to the homeostasis of the organism. Furthermore, the immune system can be viewed as a network of elements which try to connect with each other to avoid death, and are endowed with emerging properties. In this review, we will make a quick summary of the “classical” paradigms in Immunology, and will discuss the dogmas (specificity, self/not-self discrimination, tolerance) as well as the new ideas to explain how the immune system works, all of them emerging from experimental observations made in the last decade of immunological research. All this may have interesting consequences both for immunologists wanting to make mathematical models of the Immune System and for those involved in the use of immune algorithms for the development of “Artificial Immune Systems” and computational applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akira, S., Sato, S.: Toll-like receptors and their signaling mechanisms. Scandinavian Journal of Infectious Diseases 35(9), 555–562 (2003)

    Article  Google Scholar 

  • Bankovich, A.J., Girvin, A.T., Moesta, A.K., Garcia, K.: Peptide register shifting within the MHC groove: theory becomes reality. Molecular Immunology 40(14-15), 1033–1039 (2004)

    Article  Google Scholar 

  • Bretscher, P., Cohn, M.: A theory of self-nonself discrimination. Science 169(950), 1042–1049 (1970)

    Article  Google Scholar 

  • Burnet, F.M.: A modification of Jerne’s theory of antibody production using the concept of clonal selection. Cancer Journal for Clinicians 26(2), 119–121 (1976)

    Article  Google Scholar 

  • Cohen, I.R., Hershberg, U., Solomon, S.: Antigen-receptor degeneracy and immunological paradigms. Molecular Immunology 40(14-15), 993–996 (2004)

    Article  Google Scholar 

  • Coutinho, A., Haas, W.: In vivo models of dominant T-cell tolerance: where do we stand today? Trends in Immunology 22(7), 350–351 (2001)

    Article  Google Scholar 

  • Coutinho, A., Hori, S., Carvalho, T., Caramalho, I., Demengeot, J.: Regulatory T cells: the physiology of autoreactivity in dominant tolerance and quality control of immune responses. Immunological Reviews 182, 89–98 (2001)

    Article  Google Scholar 

  • Delon, J., Germain, R.N.: Information transfer at the immunological synapse. Current Biology 10(24), R923-33,-28 (2000)

    Google Scholar 

  • Edelman, G.M., Gally, J.A.: Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America 98(24), 13763–13768 (2001)

    Article  Google Scholar 

  • Germain, R.N.: An innately interesting decade of research in immunology. Nature Medicine 10(12), 1307–1320 (2004)

    Article  Google Scholar 

  • Haskins, K., Kappler, J., Marrack, P.: The major histocompatibility complex-restricted antigen receptor on T cells. Annual Review of Immunology 2, 51–66 (1984)

    Article  Google Scholar 

  • Huppa, J.B., Davis, M.M.: T-cell-antigen recognition and the immunological synapse. Nature Reviews. Immunology. 3(12), 973–983 (2003)

    Article  Google Scholar 

  • Jerne, N.: Towards a network theory of the immune system. Annales d’Immunologie 125(1-2), 373–389 (1974)

    Google Scholar 

  • Kappler, J.W., Roehm, N., Marrack, P.: T cell tolerance by clonal elimination in the thymus. Cell 49(2), 273–280 (1987)

    Article  Google Scholar 

  • Krummel, M.F., Davis, M.M.: Dynamics of the immunological synapse: finding, establishing and solidifying a connection. Current Opinion in Immunology 14(1), 66–74 (2002)

    Article  Google Scholar 

  • Lanzavecchia, A.: Antigen-specific interaction between T and B cells. Nature 314(6011), 537–539 (1985)

    Article  Google Scholar 

  • Mathis, D., Benoist, C.: Back to central tolerance. Immunity, 509–516 (2004)

    Google Scholar 

  • Matzinger, P.: Tolerance, danger, and the extended family. Annual Review of Immunology 12, 991–1045 (1994)

    Article  Google Scholar 

  • Medzhitov, R., Janeway Jr., C.: The Toll receptor family and microbial recognition. Trends in Microbiology 8(10), 452–456 (2000)

    Article  Google Scholar 

  • Mellman, I.: Antigen processing and presentation by dendritic cells: cell biological mechanisms. Advances in Experimental Medicine & Biology 560, 63–67 (2005)

    Article  Google Scholar 

  • Moretta, L., Bottino, C., Pende, D., Vitale, M., Mingari, M.C., Moretta, A.: Human natural killer cells: Molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunology Letters 100(1), 7–13 (2005)

    Article  Google Scholar 

  • Nishimura, E., Sakihama, T., Setoguchi, R., Tanaka, K., Sakaguchi, S.: Induction of antigenspecific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+CD25+CD4+ regulatory T cells. International Immunology 16(8), 1189–1201 (2004)

    Article  Google Scholar 

  • Park, Y., Moon, Y., Chung, H.Y.: AIRE-1 (autoimmune regulator type 1) as a regulator of the thymic induction of negative selection. Annals of the New York Academy of Sciences 1005, 431–435 (2003)

    Article  Google Scholar 

  • Paterson, H.M., Murphy, T.J., Purcell, E.J., Shelley, O., Kriynovich, S.J., Lien, E., Mannick, J.A., Lederer, J.A.: Injury primes the innate immune system for enhanced Toll-like receptor reactivity. Journal of Immunology 171(3), 1473–1483 (2003)

    Article  Google Scholar 

  • Shoenfeld, Y.: The idiotypic network in autoimmunity: antibodies that bind antibodies that bind antibodies. Nature Medicine 10(1), 17–18 (2004)

    Article  Google Scholar 

  • Skoberne, M., Beignon, A.S., Bhardwaj, N.: Danger signals: a time and space continuum. Trends in Molecular Medicine 10(6), 251–257 (2004)

    Article  Google Scholar 

  • Steinman, R.M., Bonifaz, L., Fujii, S., Liu, K., Bonnyay, D., Yamazaki, S., Pack, M., Hawiger, D., Iyoda, T., Inaba, K., Nussenzweig, M.: The innate functions of dendritic cells in peripheral lymphoid tissues. Advances in Experimental Medicine & Biology 560, 83–97 (2005)

    Article  Google Scholar 

  • Szyper-Kravitz, M., Zandman-Goddard, G., Lahita, R.G., Shoenfeld, Y.: The neuroendocrineimmune interactions in systemic lupus erythematosus: a basis for understanding disease pathogenesis and complexity. Rheumatic Diseases Clinics of North America 31(1), 161–175 (2005)

    Article  Google Scholar 

  • Tonegawa, S., Steinberg, C., Dube, S., Bernardini, A.: Evidence for somatic generation of antibody diversity. Proceedings of the National Academy of Sciences of the United States of America 71(10), 4027–4031 (1974)

    Article  Google Scholar 

  • Tracey, K.J.: The inflammatory reflex. Nature 420(6917), 853–859 (2002)

    Article  Google Scholar 

  • Varela, F.J., Coutinho, A.: Second generation immune networks. [Review] [59 refs]. Immunology Today 12(5), 159–166 (1991)

    Article  Google Scholar 

  • von Boehmer, H.: Mechanisms of suppression by suppressor T cells. Nature Immunology 6(4), 338–344 (2005)

    Article  Google Scholar 

  • Zinkernagel, R.M., Doherty, P.C.: Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248(450), 701–702 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cesana, E., Beltrami, S., Laface, A.E., Urthaler, A., Folci, A., Clivio, A. (2006). Current Paradigms in Immunology. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_32

Download citation

  • DOI: https://doi.org/10.1007/11731177_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33183-4

  • Online ISBN: 978-3-540-33184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics