[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Regularized Semi-supervised Classification on Manifold

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3918))

Included in the following conference series:

  • 3138 Accesses

Abstract

Semi-supervised learning gets estimated marginal distribution P X with a large number of unlabeled examples and then constrains the conditional probability p(y | x) with a few labeled examples. In this paper, we focus on a regularization approach for semi-supervised classification. The label information graph is first defined to keep the pairwise label relationship and can be incorporated with neighborhood graph which reflects the intrinsic geometry structure of P X . Then we propose a novel regularized semi-supervised classification algorithm, in which the regularization term is based on the modified Graph Laplacian. By redefining the Graph Laplacian, we can adjust and optimize the decision boundary using the labeled examples. The new algorithm combines the benefits of both unsupervised and supervised learning and can use unlabeled and labeled examples effectively. Encouraging experimental results are presented on both synthetic and real world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold Regularization: A Geometric Framework for Learning from Examples. Department of Computer Science, University of Chicago, TR-2004-06

    Google Scholar 

  2. Belkin, M., Niyogi, P., Sindhwani, V.: On Manifold Regularization. Department of Computer Science, University of Chicago, TR-2004-05

    Google Scholar 

  3. Belkin, M., Matveeva, I., Niyogi, P.: Regression and Regularization on Large Graphs. In: Proceedings of the Conference on Computational Learning Theory (2004)

    Google Scholar 

  4. Belkin, M., Niyogi, P.: Using Manifold Structure for Partially Labeled Classification. In: NIPS 2002, vol. 15 (2002)

    Google Scholar 

  5. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Computation (June 2003)

    Google Scholar 

  6. Blum, A., Mitchell, T.: Combining Labeled and Unlabeled Data with Co-training. In: Proceedings of the Conference on Computational Learning Theory (1998)

    Google Scholar 

  7. Szummer, M., Jaakkola, T.: Partially Labeled Classification with Markov Random Walks. In: NIPS 2001, vol. 14 (2001)

    Google Scholar 

  8. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised Learning Using Gaussian Fields and Harmonic Functions. In: ICML 2003 (2003)

    Google Scholar 

  9. Blum, A., Chawla, S.: Learning from Labeled and Unlabeled Data Using Graph Mincuts. In: ICML 2001 (2001)

    Google Scholar 

  10. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schoelkopf, B.: Learning with Local and Global Consistency. In: NIPS 2003, vol. 16 (2003)

    Google Scholar 

  11. De Vito, E., Rosasco, L., Caponnetto, A., De Giovannini, U., Odone, F.: Learning from Examples as an Inverse Problem. Journal of Machine Learning Research 6, 883–904 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Bousquet, O., Chapelle, O., Hein, M.: Measure Based Regularization. In: NIPS 2003, vol. 16 (2003)

    Google Scholar 

  13. Szummer, M., Jaakkola, T.: Information Regularization with Partially Labeled Data. In: NIPS 2002, vol. 15 (2002)

    Google Scholar 

  14. Krishnapuram, B., Williams, D., Ya, X., Hartemink, A., Carin, L., Figueiredo, M.A.T.: On Semi-Supervised Classification. In: NIPS 2004, vol. 17 (2004)

    Google Scholar 

  15. Kegl, B., Ligen, W.: Boosting on Manifolds: Adaptive Regularization of Base Classifiers. In: NIPS 2004, vol. 17 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, L., Luo, S., Zhao, Y., Liao, L., Wang, Z. (2006). Regularized Semi-supervised Classification on Manifold. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_5

Download citation

  • DOI: https://doi.org/10.1007/11731139_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33206-0

  • Online ISBN: 978-3-540-33207-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics