[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ArHeX: An Approximate Retrieval System for Highly Heterogeneous XML Document Collections

  • Conference paper
Advances in Database Technology - EDBT 2006 (EDBT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3896))

Included in the following conference series:

Abstract

Handling the heterogeneity of structure and/or content of XML documents for the retrieval of information is a fertile field of research nowadays. Many efforts are currently devoted to identifying approximate answers to queries that require relaxation on conditions both on the structure and the content of XML documents [1,2,4,5]. Results are ranked relying on score functions that measure their quality and relevance and only the top-k returned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 496–513. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and Content Scoring for XML. In: VLDB, pp. 361–372 (2005)

    Google Scholar 

  3. Guerrini, G., Mesiti, M., Sanz, I.: An Overview of Similarity Measures for Clustering XML Documents. In: Vakali, A., Pallis, G. (eds.) Web Data Management Practices: Emerging Techniques and Technologies, Idea Group, USA

    Google Scholar 

  4. Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive Processing of Top-k Queries in XML. In: ICDE, pp. 162–173 (2005)

    Google Scholar 

  5. Nierman, A., Jagadish, H.V.: Evaluating Structural Similarity in XML Documents. In: WebDB, pp. 61–66 (2002)

    Google Scholar 

  6. Sanz, I., Mesiti, M., Guerrini, G., Llavori, R.B.: Approximate Subtree Identification in Heterogeneous XML Documents Collections. In: Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M., Unland, R. (eds.) XSym 2005. LNCS, vol. 3671, pp. 192–206. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Sanz, I., Mesiti, M., Guerrini, G., Berlanga Llavori, R.: Approximate Retrieval of Highly Heterogeneous XML Documents. Tech. report. University of Milano (2005)

    Google Scholar 

  8. Theobald, A., Weikum, G.: The Index-Based XXL Search Engine for Querying XML Data with Relevance Ranking. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 477–495. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanz, I., Mesiti, M., Guerrini, G., Llavori, R.B. (2006). ArHeX: An Approximate Retrieval System for Highly Heterogeneous XML Document Collections. In: Ioannidis, Y., et al. Advances in Database Technology - EDBT 2006. EDBT 2006. Lecture Notes in Computer Science, vol 3896. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11687238_88

Download citation

  • DOI: https://doi.org/10.1007/11687238_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32960-2

  • Online ISBN: 978-3-540-32961-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics