[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Indexing Spatially Sensitive Distance Measures Using Multi-resolution Lower Bounds

  • Conference paper
Advances in Database Technology - EDBT 2006 (EDBT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3896))

Included in the following conference series:

  • 1718 Accesses

Abstract

Comparison of images requires a distance metric that is sensitive to the spatial location of objects and features. Such sensitive distance measures can, however, be computationally infeasible due to the high dimensionality of feature spaces coupled with the need to model the spatial structure of the images.

We present a novel multi-resolution approach to indexing spatially sensitive distance measures. We derive practical lower bounds for the earth mover’s distance (EMD). Multiple levels of lower bounds, one for each resolution of the index structure, are incorporated into algorithms for answering range queries and k-NN queries, both by sequential scan and using an M-tree index structure. Experiments show that using the lower bounds reduces the running time of similarity queries by a factor of up to 36 compared to a sequential scan without lower bounds. Computing separately for each dimension of the feature vector yields a speedup of ~14. By combining the two techniques, similarity queries can be answered more than 500 times faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Swedlow, J.R., Goldberg, I., Brauner, E., Sorger, P.K.: Informatics and quantitative analysis in biological imaging. Science 300, 100–102 (2003)

    Article  Google Scholar 

  2. Manjunath, B.S., Salembier, P., Sikora, T. (eds.): Introduction to MPEG 7: Multimedia Content Description Language. Wiley (2002)

    Google Scholar 

  3. Mahalanobis, P.: On the generalised distance in statistics. In: Proc. Nat. Inst. Sci., India, vol. 12, pp. 49–55 (1936)

    Google Scholar 

  4. Lewis, G.P., Guerin, C.J., Anderson, D.H.: Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment. Am. J. of Ophtalmol 118, 368–376 (1994)

    Google Scholar 

  5. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40, 99–121 (2000)

    Article  MATH  Google Scholar 

  6. Werman, M., Peleg, S., Rosenfeld, A.: A distance metric for multi-dimensional histograms. Computer, Vision, Graphics, and Image Proc 32, 328–336 (1985)

    Article  Google Scholar 

  7. Peleg, S., Werman, M., Rom, H.: A unified approach to the change of resolution: Space and gray-level. IEEE Trans. PAMI 11, 739–742 (1989)

    Google Scholar 

  8. Levina, E., Bickel, P.: The earth mover’s distance is the Mallows distance: Some insights from statistics. Proc. ICCV 2, 251–256 (2001)

    Google Scholar 

  9. Stricker, M.A., Orengo, M.: Similarity of color images. In: Niblack, C.W., Jain, R.C. (eds.) Storage and Retrieval for Image and Video Databases III. Vol. 2420 of Proceedings of SPIE, pp. 381–392 (1995)

    Google Scholar 

  10. Grauman, K., Darrell, T.: Fast contour matching using approximate earth mover’s distance. In: Proc. CVPR (2004)

    Google Scholar 

  11. Lazebnik, S., Schmid, C., Ponce, J.: Sparse texture representation using affineinvariant neighborhoods. In: Proc. CVPR (2003)

    Google Scholar 

  12. Typke, R., Veltkamp, R., Wiering, F.: Searching notated polyphonic music using transportation distances. In: Proc. Int. Conf. Multimedia, pp. 128–135 (2004)

    Google Scholar 

  13. Demirci, M.F., Shokoufandeh, A., Dickinson, S., Keselman, Y., Bretzner, L.: Many-to-many feature matching using spherical coding of directed graphs. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 322–335. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Lavin, Y., Batra, R., Hesselink, L.: Feature comparisons of vector fields using earth mover’s distance. In: Proc. of the Conference on Visualization, pp. 103–109 (1998)

    Google Scholar 

  15. Hillier, F.S., Lieberman, G.J.: Introduction to Mathematical Programming, 1st edn. McGraw-Hill, New York (1990)

    Google Scholar 

  16. Klee, V., Minty, G.: How good is the simplex algorithm. In: Shisha, O. (ed.) Inequalities, vol. III, pp. 159–175. Academic Press, New York (1972)

    Google Scholar 

  17. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: Proc. VLDB, pp. 194–205 (1998)

    Google Scholar 

  18. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: Proc. VLDB, pp. 426–435 (1997)

    Google Scholar 

  19. Ciaccia, P., Patella, M.: Bulk loading the M-tree. In: Proc. ADC (1998)

    Google Scholar 

  20. Indyk, P., Thaper, N.: Fast image retrieval via embeddings. In: Proc. Internat. Workshop on Statistical and Computational Theories of Vision (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ljosa, V., Bhattacharya, A., Singh, A.K. (2006). Indexing Spatially Sensitive Distance Measures Using Multi-resolution Lower Bounds. In: Ioannidis, Y., et al. Advances in Database Technology - EDBT 2006. EDBT 2006. Lecture Notes in Computer Science, vol 3896. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11687238_51

Download citation

  • DOI: https://doi.org/10.1007/11687238_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32960-2

  • Online ISBN: 978-3-540-32961-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics