Abstract
We show that any comparison based, randomized algorithm to approximate any given ranking of n items within expected Spearman’s footrule distance n 2/ν(n) needs at least n (min{log ν(n), log n} – 6) comparisons in the worst case. This bound is tight up to a constant factor since there exists a deterministic algorithm that shows that 6n(log ν(n)+1) comparisons are always sufficient.
Partly supported by the Swiss National Science Foundation under the grant “Robust Algorithms for Conjoint Analysis” and by the joint Berlin/Zurich graduate program Combinatorics, Geometry and Computation, financed by ETH Zurich and the German Science Foundation (DFG).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Linear time bounds for median computations. In: STOC 1972: Proceedings of the fourth annual ACM symposium on Theory of computing, pp. 119–124. ACM Press, New York (1972)
Chazelle, B.: The soft heap: An approximate priority queue with optimal error rate. Journal of the ACM 47(6), 1012–1027 (2000)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press/McGraw-Hill (1990)
Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. Journal of the Royal Statistical Society 39(2), 262–268 (1977)
Hwang, H.K., Yang, B.Y., Yeh, Y.N.: Presorting algorithms: an average-case point of view. Theoretical Computer Science 242(1-2), 29–40 (2000)
Kahn, J., Kim, J.H.: Entropy and sorting. In: STOC 1992: Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pp. 178–187. ACM Press, New York (1992)
Knuth, D.E.: The Art of Computer Programming, vol. 3. Addison-Wesley, Reading (1973)
Mallows, C.L.: Non-null ranking models. Biometrica 44, 114–130 (1957)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giesen, J., Schuberth, E., Stojaković, M. (2006). Approximate Sorting. In: Correa, J.R., Hevia, A., Kiwi, M. (eds) LATIN 2006: Theoretical Informatics. LATIN 2006. Lecture Notes in Computer Science, vol 3887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11682462_49
Download citation
DOI: https://doi.org/10.1007/11682462_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32755-4
Online ISBN: 978-3-540-32756-1
eBook Packages: Computer ScienceComputer Science (R0)