[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Approximate Sorting

  • Conference paper
LATIN 2006: Theoretical Informatics (LATIN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3887))

Included in the following conference series:

Abstract

We show that any comparison based, randomized algorithm to approximate any given ranking of n items within expected Spearman’s footrule distance n 2/ν(n) needs at least n (min{log ν(n), log n} – 6) comparisons in the worst case. This bound is tight up to a constant factor since there exists a deterministic algorithm that shows that 6n(log ν(n)+1) comparisons are always sufficient.

Partly supported by the Swiss National Science Foundation under the grant “Robust Algorithms for Conjoint Analysis” and by the joint Berlin/Zurich graduate program Combinatorics, Geometry and Computation, financed by ETH Zurich and the German Science Foundation (DFG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Linear time bounds for median computations. In: STOC 1972: Proceedings of the fourth annual ACM symposium on Theory of computing, pp. 119–124. ACM Press, New York (1972)

    Chapter  Google Scholar 

  2. Chazelle, B.: The soft heap: An approximate priority queue with optimal error rate. Journal of the ACM 47(6), 1012–1027 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press/McGraw-Hill (1990)

    Google Scholar 

  4. Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. Journal of the Royal Statistical Society 39(2), 262–268 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Hwang, H.K., Yang, B.Y., Yeh, Y.N.: Presorting algorithms: an average-case point of view. Theoretical Computer Science 242(1-2), 29–40 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kahn, J., Kim, J.H.: Entropy and sorting. In: STOC 1992: Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pp. 178–187. ACM Press, New York (1992)

    Chapter  Google Scholar 

  7. Knuth, D.E.: The Art of Computer Programming, vol. 3. Addison-Wesley, Reading (1973)

    MATH  Google Scholar 

  8. Mallows, C.L.: Non-null ranking models. Biometrica 44, 114–130 (1957)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giesen, J., Schuberth, E., Stojaković, M. (2006). Approximate Sorting. In: Correa, J.R., Hevia, A., Kiwi, M. (eds) LATIN 2006: Theoretical Informatics. LATIN 2006. Lecture Notes in Computer Science, vol 3887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11682462_49

Download citation

  • DOI: https://doi.org/10.1007/11682462_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32755-4

  • Online ISBN: 978-3-540-32756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics