[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ICA Based Semi-supervised Learning Algorithm for BCI Systems

  • Conference paper
Independent Component Analysis and Blind Signal Separation (ICA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3889))

  • 3175 Accesses

Abstract

As an emerging technique, brain-computer interfaces (BCIs) bring us a new communication interface which can translate brain activities into control signals of devices like computers, robots etc. In this study, we introduce an independent component analysis (ICA) based semi-supervised learning algorithm for BCI systems. In this algorithm, we separate the raw electroencephalographic (EEG) signals into several independent components using ICA; then choose a best independent component for feature extraction and classification. To demonstrate the validity of our algorithm, we apply it to an data set from an EEG-based cursor control experiment implemented in Wadsworth Center. The data analysis results show that both ICA preprocessing and semi-supervised learning can improve prediction accuracy significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M.: Brain-Computer Interface Technology: A Review of the First International Meeting. IEEE Trans. Rehab. Eng. 8, 164–173 (2000)

    Article  Google Scholar 

  2. Fabiani, G.E., McFarland, D.J., Wolpaw, J.R., Pfurtscheller, G.: Conversion of EEG Activity Into Cursor Movement by a Brain-Computer Interface. IEEE Trans. Rehab. Eng. 12, 331–338 (2004)

    Article  Google Scholar 

  3. Hyvärinen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13, 411–430 (2000)

    Article  Google Scholar 

  4. Li, Y., Wang, J., Zurada, J.M.: Blind Extraction of Singularly Mixed Sources Signals. IEEE Trans. on Neural Networks 11, 1413–1422 (2000)

    Article  Google Scholar 

  5. Li, Y., Wang, J.: Sequential Blind Extraction of Linearly Mixed Sources. IEEE Trans. on Signal Processing 50, 997–1006 (2002)

    Article  Google Scholar 

  6. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing (new revised and improved edition). John Wiley, New York (2003)

    Google Scholar 

  7. Makeig, S., Bell, A.J., Jung, T.-P., Sejnowski, T.J.: Independent Component Analysis of Electroencephalographic Data. In: Adv. Neural Info. Processing Systems, vol. 8, pp. 145–151 (1996)

    Google Scholar 

  8. Comon, P.: Independent Component Analysis - a New Concept? Signal Procesing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  9. Blankertz, B.: BCI Competition 2003, Available, http://ida.first.fhg.de/projects/bci/competition/

  10. Amari, S.: Natural Gradient Learning for Over- and Under-Complete Bases in ICA. Neural Computation 11, 1875–1883 (1999)

    Article  Google Scholar 

  11. Chichocki, A.: Blind Signal Processing Methods for Analyzing Multichannel Brain Signals. International Journal of Bioelectromagnetism 6 (2004)

    Google Scholar 

  12. Choi, S., Chichocki, A., Amari, S.: Flexible Independent Component Analysis. In: Proc. of the 1998 IEEE Workshop on NNSP, pp. 83–92 (1998)

    Google Scholar 

  13. Cheng, M., Jia, W., Gao, X., Gao, S., Yang, F.: Mu rhythm-based Cursor Control: an offline analysis. Clinical Neurophysiology 115, 745–751 (2004)

    Article  Google Scholar 

  14. Blanchard, G., Blankertz, B.: BCI Competition 2003–Data Set IIa: Spatial Patterns of Self-Controlled Brain Rhythm Modulations. IEEE Trans. on Biomedical Engineering 51, 1062–1066 (2004)

    Article  Google Scholar 

  15. Marple, S.L.: Digital Spectral Analysis, ch. 7. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  16. Müller, K.R., Krauledat, M., Dornhege, G., Curio, G., Blankertz, B.: Machine learning techniques for brain-computer interfaces. Biomed. Tech. 49, 11–22 (2004)

    Article  Google Scholar 

  17. http://ida.first.fraunhofer.de/projects/bci/competition_iii

  18. Godfried, T.T.: Comments on a Modified Figure of Merit for Feature Selection in Pattern Recognition. IEEE Trans. on Information Theory 17, 618–620 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qin, J., Li, Y., Liu, Q. (2006). ICA Based Semi-supervised Learning Algorithm for BCI Systems. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_27

Download citation

  • DOI: https://doi.org/10.1007/11679363_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32630-4

  • Online ISBN: 978-3-540-32631-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics