Abstract
As an emerging technique, brain-computer interfaces (BCIs) bring us a new communication interface which can translate brain activities into control signals of devices like computers, robots etc. In this study, we introduce an independent component analysis (ICA) based semi-supervised learning algorithm for BCI systems. In this algorithm, we separate the raw electroencephalographic (EEG) signals into several independent components using ICA; then choose a best independent component for feature extraction and classification. To demonstrate the validity of our algorithm, we apply it to an data set from an EEG-based cursor control experiment implemented in Wadsworth Center. The data analysis results show that both ICA preprocessing and semi-supervised learning can improve prediction accuracy significantly.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M.: Brain-Computer Interface Technology: A Review of the First International Meeting. IEEE Trans. Rehab. Eng. 8, 164–173 (2000)
Fabiani, G.E., McFarland, D.J., Wolpaw, J.R., Pfurtscheller, G.: Conversion of EEG Activity Into Cursor Movement by a Brain-Computer Interface. IEEE Trans. Rehab. Eng. 12, 331–338 (2004)
Hyvärinen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13, 411–430 (2000)
Li, Y., Wang, J., Zurada, J.M.: Blind Extraction of Singularly Mixed Sources Signals. IEEE Trans. on Neural Networks 11, 1413–1422 (2000)
Li, Y., Wang, J.: Sequential Blind Extraction of Linearly Mixed Sources. IEEE Trans. on Signal Processing 50, 997–1006 (2002)
Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing (new revised and improved edition). John Wiley, New York (2003)
Makeig, S., Bell, A.J., Jung, T.-P., Sejnowski, T.J.: Independent Component Analysis of Electroencephalographic Data. In: Adv. Neural Info. Processing Systems, vol. 8, pp. 145–151 (1996)
Comon, P.: Independent Component Analysis - a New Concept? Signal Procesing 36, 287–314 (1994)
Blankertz, B.: BCI Competition 2003, Available, http://ida.first.fhg.de/projects/bci/competition/
Amari, S.: Natural Gradient Learning for Over- and Under-Complete Bases in ICA. Neural Computation 11, 1875–1883 (1999)
Chichocki, A.: Blind Signal Processing Methods for Analyzing Multichannel Brain Signals. International Journal of Bioelectromagnetism 6 (2004)
Choi, S., Chichocki, A., Amari, S.: Flexible Independent Component Analysis. In: Proc. of the 1998 IEEE Workshop on NNSP, pp. 83–92 (1998)
Cheng, M., Jia, W., Gao, X., Gao, S., Yang, F.: Mu rhythm-based Cursor Control: an offline analysis. Clinical Neurophysiology 115, 745–751 (2004)
Blanchard, G., Blankertz, B.: BCI Competition 2003–Data Set IIa: Spatial Patterns of Self-Controlled Brain Rhythm Modulations. IEEE Trans. on Biomedical Engineering 51, 1062–1066 (2004)
Marple, S.L.: Digital Spectral Analysis, ch. 7. Prentice-Hall, Englewood Cliffs (1987)
Müller, K.R., Krauledat, M., Dornhege, G., Curio, G., Blankertz, B.: Machine learning techniques for brain-computer interfaces. Biomed. Tech. 49, 11–22 (2004)
Godfried, T.T.: Comments on a Modified Figure of Merit for Feature Selection in Pattern Recognition. IEEE Trans. on Information Theory 17, 618–620 (1971)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qin, J., Li, Y., Liu, Q. (2006). ICA Based Semi-supervised Learning Algorithm for BCI Systems. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_27
Download citation
DOI: https://doi.org/10.1007/11679363_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32630-4
Online ISBN: 978-3-540-32631-1
eBook Packages: Computer ScienceComputer Science (R0)