[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Programming with Fuzzy Logic and Mathematical Functions

  • Conference paper
Fuzzy Logic and Applications (WILF 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3849))

Included in the following conference series:

Abstract

This paper focuses on the integration of the (also integrated) declarative paradigms of functional logic and fuzzy logic programming, in order to obtain a richer and much more expressive framework where mathematical functions cohabit with fuzzy logic features. In this sense, this paper must be seen as a first stage in the development of this new research line. Starting with two representative languages from both settings, namely Curry and Likelog, we propose an hybrid dialect where a set of rewriting rules associated to the functional logic dimension of the language, are accompanied with a set of similarity equations between symbols of the same nature and arity, which represents the fuzzy counterpart of the new environment. We directly act inside the kernel of the operational mechanism of the language, thus obtaining a fuzzy variant of needed narrowing which fully exploits the similarities collected in a given program. A key point in the design of this last operational method is that, apart from computing at least the same elements of the crisp case, all similar terms of a given goal are granted to be completely treated too while avoiding the risk of infinite loops associated to the intrinsic (reflexive, symmetric and transitive) properties of similarity relations.

This work has been partially supported by the EU, under FEDER, and the Spanish Science and Education Ministry (MEC) under grant TIN 2004-07943-C04-03.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antoy, S.: Definitional trees. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 143–157. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  2. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. Journal of the ACM 47(4), 776–822 (2000)

    Article  MathSciNet  Google Scholar 

  3. Arcelli, F., Formato, F.: Likelog: A logic programming language for flexible data retrieval. In: Proc. of the ACM Symposium on Applied Computing (SAC 1999). Artificial Intelligence and Computational Logic, pp. 260–267. ACM, New York (1999)

    Chapter  Google Scholar 

  4. Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril- Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley &; Sons, Inc., Chichester (1995)

    Google Scholar 

  5. Garmendia, L., Salvador, A.: Comparing transitive closure with other new T-transivization methods. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 306–315. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Guadarrama, S., Muñoz, S., Vaucheret, C.: Fuzzy Prolog: A new approach using soft constraints propagation. Fuzzy Sets and Systems, Elsevier 144(1), 127–150 (2004)

    Article  MATH  Google Scholar 

  7. Hanus, M.: The Integration of Functions into Logic Programming: From Theory to Practice. Journal of Logic Programming 19,20, 583–628 (1994)

    Article  MathSciNet  Google Scholar 

  8. Huet, G., Lévy, J.J.: Computations in orthogonal rewriting systems, Part I + II. In: Lassez, J.L., Plotkin, G.D. (eds.) Computational Logic – Essays in Honor of Alan Robinson, pp. 395–443. The MIT Press, Cambridge (1992)

    Google Scholar 

  9. Ishizuka, M., Kanai, N.: Prolog-ELF Incorporating Fuzzy Logic. In: Joshi, A.K. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI 1985), Los Angeles, CA, August 1985, pp. 701–703. Morgan Kaufmann, San Francisco (1985)

    Google Scholar 

  10. Lee, R.C.T.: Fuzzy Logic and the Resolution Principle. Journal of the ACM 19(1), 119–129 (1972)

    Article  Google Scholar 

  11. Li, D., Liu, D.: A fuzzy Prolog database system. John Wiley & Sons, Inc., Chichester (1990)

    Google Scholar 

  12. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)

    MATH  Google Scholar 

  13. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets and Systems 146(1), 43–62 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Moreno, G.: Transformation Rules and Strategies for Functional-Logic Programs. AI Communications 15(2), 3 (2002)

    MathSciNet  Google Scholar 

  15. Moreno, G.: Building a Fuzzy Transformation System. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, p. 10 pages. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Moreno, G., Pascual, V.: Functional Logic Programming with Similarity. In: López-Fraguas, F. (ed.) Proc. of the V Jornadas sobre Programación y Lenguajes, PROLE 2005, pp. 121–126. University of Granada (2005)

    Google Scholar 

  17. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall/CRC, Boca Ratón (2000)

    MATH  Google Scholar 

  18. Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Fuzzy Sets and Systems 275, 389–426 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Vojtáš, P., Paulík, L.: Soundness and completeness of non-classical extended SLD-resolution. In: Dyckhoff, R., et al. (eds.) ELP 1996. LNCS, vol. 1050, pp. 289–301. Springer, Heidelberg (1996)

    Google Scholar 

  20. Zadeh, L.A.: Similarity relations and fuzzy orderings. Informa. Sci. 3, 177–200 (1971)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreno, G., Pascual, V. (2006). Programming with Fuzzy Logic and Mathematical Functions. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds) Fuzzy Logic and Applications. WILF 2005. Lecture Notes in Computer Science(), vol 3849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11676935_11

Download citation

  • DOI: https://doi.org/10.1007/11676935_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32529-1

  • Online ISBN: 978-3-540-32530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics