[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tradeoffs in Depth-Two Superconcentrators

  • Conference paper
STACS 2006 (STACS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3884))

Included in the following conference series:

  • 1374 Accesses

Abstract

An N-superconcentrator is a directed graph with N input vertices and N output vertices and some intermediate vertices, such that for k=1, 2, ..., N, between any set of k input vertices and any set of k output vertices, there are k vertex disjoint paths. In a depth-twoN-superconcentrator each edge either connects an input vertex to an intermediate vertex or an intermediate vertex to an output vertex. We consider tradeoffs between the number of edges incident on the input vertices and the number of edges incident on the output vertices in a depth-two N-superconcentrator. For an N-superconcentrator G, let a(G) be the average degree of the input vertices and b(G) be the average degree of the output vertices. Assume that b(G) ≥ a(G). We show that there is a constant k 1 > 0 such that

\(a(G)log (\frac{2b(G)}{a(G)}) log b(G) \geq k_1 \cdot log^2 N\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Pudlák, P.: Superconcentrators of depth 2 and 3; odd levels help (rarely). J. Comput. System Sci. 48, 194–202 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dolev, D., Dwork, C., Pippenger, N., Wigderson, A.: Superconcentrators, generalizers and generalized connectors with limited depth. In: Proc. 15th Annual ACM Symposium on Theory of Computing, New York, pp. 42–51 (1983)

    Google Scholar 

  3. Frandsen, G.S., Hansen, J.P., Miltersen, P.B.: Lower bounds for dynamic algebraic problems. Information and Computation 171(2), 333–349 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Meshulum, R.: A geometric construction of a superconcentrator of depth 2. Theoret. Comput. Sci. 32, 215–219 (1984)

    Article  MathSciNet  Google Scholar 

  5. Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs. In: Proc. 8th Annual ACM Symposium on Theory of Computing, Hershey, PA, May 1976, pp. 149–160 (1976)

    Google Scholar 

  6. Pippenger, N.: Superconcentrators. SIAM J. Comput. 6, 298–304 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pippenger, N.: Superconcentrators of depth 2. J. Comput. System Sci. 24, 82–90 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pudlák, P.: Communication in bounded depth circuits. Combinatorica 14, 203–216 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors and depth-two superconcentrators. SIAM J. Disc. Math. 32, 1570–1585 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Reif, J.H., Tate, S.R.: On dynamic algorithms for algebraic problems. Journal of Algorithms 22, 347–371 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Valiant, L.G.: On nonlinear lower bounds in computational complexity. In: Proc. 7th Annual ACM Symposium on Theory of Computing, Albuquerque, NM, May 1975, pp. 45–53 (1975)

    Google Scholar 

  12. Valiant, L.G.: Graph-theoretic properties in computational complexity. J. Comput. System Sci. 13, 278–285 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dutta, C., Radhakrishnan, J. (2006). Tradeoffs in Depth-Two Superconcentrators. In: Durand, B., Thomas, W. (eds) STACS 2006. STACS 2006. Lecture Notes in Computer Science, vol 3884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11672142_30

Download citation

  • DOI: https://doi.org/10.1007/11672142_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32301-3

  • Online ISBN: 978-3-540-32288-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics